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Abstract

This is the final report for the research project entitled OFUS: Optimal
Projection for Uncertain Syste:rsg " opUS” is a unified approach to control-system
design and analysis for high-performance, multivariable applications such as
large flexible space structures. In particular, OPUS yields low-order, robust
controllers which meet both time- and frequency-domain objectives. The present
report is divided into three main research areas:

1) Fixed-Structure Design
2) Robust Analysis and Design

3) Further Extensions
Major accomplishments of the research program include:

1) A unified approach to reduced-order, robust modeling, estimation, and
control including singular problems and decentralized architectures

2) A computationally tractable approach to designing low-order, finite-
dimensional controllers for distributed parameter systems

3) A thorough development of quadratic Lyapunov bounds for robust
stability and performance analysis A -,

4) Complete unification of LQ (time-domain) and P&g"(frequency—domain)
design criteria for full- and reduced-order modeling, estimation, and
control, {1 & ) =

The report includes reproductions of 41 research papers.

Egcesnon For

PNTIS  CRA&I

; OTIC 1AB (]

i

i Unaninon cod g
Justitcation i |
By . ..
Qistribatin +f

Auvgiiaciiy Codes

- | Avuil and/or
Dist Special

A




Table of Contents

l Section Title
1.0 INTRODUCTION. . v v v &+ & & o & o o« o @
' 1.1 Overview. . .
1.2 Status of Computatlonal Results e e e e
1.3 Long-Range Goals of the Project . . . . . .
l 1.4 Plan of This Report . . «. « v + « « o « « &
2.0 FIXED-STRUCTURE DESIGN. . « « « v « « o o o o
l 2.1 Motivation. . . .
2.2 The'mreeBasmProblems.........
2.3 Finite-Dimensional Control of Distrubuted
' Parameter Systems . . .
2.4 Decentralized Control . e e e e e e
2.5 Singular Control. . . . . « 4 ¢« ¢ 4 o 4 o
' 3.0 ROBUST ANALYSIS AND DESIGN. . & & v 4« & & + &
3.1 Motivation. . .
. 3.2 Stochastic Modelmg G t e e e e e e e s
3.3 Robust Analysis . . . . « . . . + « « &
3.4 Robust Synthesis. . . . . . . . . . .
4.0 FURTHER EXTENSIONS. . . . . ¢ v ¢ o o o « o &
l 4.1 Motivation. . . . . . . . . . . . . . . ..
4.2 Tracking. e .
l 4.3 Sampled—Data Control . .
5.0 OPEN PROBLEMS . . & ¢ ¢ ¢ ¢ o 4 o ¢ o o o o o &
5.1 Motivation. . . .
' 5.2 leedstructureDes1gn..........
5.3 Robust Analysis and Design. . . . .
I 5.4 Tracking and Sampled-Data Control .
6.0 COOMPREHENSIVE REFERENCE LIST.
7.0 PROGRAM PERSONNEL . . .
7.1 Dr. Dennis S. Bermstein .
. 7.2 Professor Wassim M. Haddad.
7.3 Acknowledgements.




List of Appendices

Appendix Title

A OPUS Review Paper . . . « « « « « « o .
B Fixed Structure Design. . . . . . . . .
C Distributed Parameter Systems . . . . .
D Decentralized Control . . . . . . . . .
E Singular Control. . . . . . . . . . . .
F Stochastic Modeling . . . . . . . . . .
G Robust Analysis . . « « « « « ¢ o « < &
H Robust Synthesis: Linear Bourd . . . .
I Robust Synthesis: Quadratic Bourd. .
K Tracking Control. . . . . . . . . . . .
L Discrete-Time Theory. . « « « « « « . .

References

88

32,29,24

37,122

76,121
78,79,130
35,36,104,39,77
115,123,75
95,119,89
101,83,94,113
114,116,117,115
67,86,103,125

41,44,54,69,92,87,128




SECTION 1.0
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1.0 INTRODUCTION
1.1 Overview

Over the past 10-15 years controls researchers have come to the
realization that classical controls analysis and design techniques are
inadequate in the face of modern large scale, high-performence applications.
In particular, the principal motivation for OPUS is the problem of vibration
suppression in large lightweight flexible space structures characterized by
high-dimensional, highly uncertain models. In addition, stringent performance
specifications in the face of high disturbance levels place severe demands on
existing control-design techniques. Specifically, performance tradeoffs
involving sensors, processors, actuators, and identification accuracy must be
cut as tightly as possible to minimize hardware and testing costs. For
feasibility and cost effectiveness, system design must also be performed
efficiently with respect to human and computer resources.

The goal of this project has been to develop a mathematically rigorous
control-design methodology which directly addresses these technology issues.
In particular, optimal projection theory addresses the need for low-order,
high-performance controllers which can be implemented on-board for real-time
operation. Low-order controllers are necessitated by cost, weight, and
reliability constraints associated with space-qualified processors.
Furthermore, OPUS incorporates a fundamental theory of robust controller
synthesis to account for unavoidable modeling uncertainties arising for reasons
such as material and manufacturing variations, thermal and aging effects, as
well as limits to identification accuracy. The principal contribution of OPUS
is thus a unified theory which simultaneously accounts for both real-time
processor constraints and modeling uncertainty. A high level overview of OPUS
is given in [88] (Apperdix A).

During the course of this project OPUS has, in addition, been extended to

a large class of problems in systems and control theory. The current scope of
the theory includes (see Figure 1-1):
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Figure 1-1. Scope of OPUS
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1. A unified treatment of reduced-order modeling, estimation, and
control (Appendix B):;

2. Robust estimation and control via quadratic Lyapunov functions
including robust performance (2Appendices G,H,I);

3. A unified approach to L, and H, control including parametric
robustness (Appendix J);

4. Decentralized, nonstrictly proper, and sampled-data control
(Appendices D,E,L).

Of particular interest is the recent extension to H, control. As shown in
(117] (Appendix J), we have developed a method for directly imbedding H, design
constraints within OPUS theory and thus, in particular, within IQG. These
results are given by a system of modified Riccati equations which directly
generalize 1QG theory and which have the potential for significant
computational savings compared to existing H, synthesis methods.

The underlying philosophy of OPUS is to capture as many design
constraints as possible within a single system of design equations. This is
demonstrated in [117] by the unification of time- and frequency-domain
criteria addressed by the I,/H, design equations. An additional example is
provided by the results obtained in (119,94] (Appendices H and I) for robust
stability and performance via fixed-order compensation in the presence of real-
valued structured parameter uncertainty. In these algebraic design equations
the projection matrix automatically enforces a constraint on controller order,
while additional terms guarantee both robust stability and performance. Note
that for full-order controllers in the absence of uncertainty, these four
coupled equations reduce to the standard pair of separated Riccati equations of
LG theory. Versions of these equations have been developed for each of the
problems shown in Figure 1-1. These results are discussed in more technical
detail in the following sections.

The justification for this line of research is based upon several
considerations. First, and most obvicus, is the fact that our results show
that numerous design constraints can be captured simultaneously within a
constructive theory which directly generalizes LQG theory. Such an approach
provides the capability for simultaneocusly performing multiple design tradeoffs
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for multivariable systems with respect to competing constraints such as sensor
noise, control authority, controller order, robustness, disturbance
attenuation, mean-square error, sample rate, degree of decentralization, etc.
Next we stress that rathe: than being ad hoc constructions, these design
equations follow directly from the optimality of well-defined performance
objectives. Thus, these results are useful in assessing the suboptimality of
alternative methods. For example, as shown in [20] several suboptimal
approaches to reduced-order control design can be viewed as approximations to
the optimal projection equations.

1.2 Status of Computational Results

Overall, OPUS can be viewed as a theory for characterizing solutions to
constrained control-design problems. Transforming OPUS into a practical design
methodology requires the development of effective computational algorithms.
Such development has been carried out in related work by S. Richter at Harris
Corporation. Using homotopic continuation methods, Richter has developed
efficient algorithms which fully account for the structure of these modified

Riccati equations and their coupling terms. Homotopy algorithms, as reviewed
in

S. Richter and R. DeCarlo, "Continuation Methods: Theory and
Applications," IEEE Trans. Autom. Contr., Vol. 28, pp. 660-665,
1983.

offer several advantages over both gradient-based and Newton-type methods.
For example, homotopy methods have a strong theoretical foundation based upon
differential topology, in particular, topological degree theory, while in
practice these methods effectively address the key issues of startup,
convergence, and global optimality. Homotopy algorithms have also reached a

high degree of maturity and availability with the advent of HOMPACK described
in




L. T. Watson, S. C. Billups, and A. P. Morgan, "A Suite of Codes
for Glabally Convergent Homotopy Algorithms," ACM Trans. Math.
Software, Vol. 13, pp. 281-310, 1987.

The continuation algorithm developed for the optimal projection equations
essentially follows a smooth path connecting an easily solvable version of the
equations with the final, desired form. The algorithm utilizes the tensor
derivatives of the terms in the optimal projection equations to integrate along
the solution paths. To demonstrate the algorithm, an 8th-order, nonminimum
phase example originally due to

R. H. Cannon, Jr., and D. E. Rosenthal, "Experiments in Control
of Flexible Structures with Noncolocated Sensors and Actuators,"
ATAA J. Guid. Contr. Dyn., Vol. 7, pp. 546-553, 1984.

was considered. This problem was used in

Y. Liu and B. D. 0. Anderson, "Controller Reduction Via Stable
Factorization and Balancing," Int. J. Contr., Vol. 44, pp. 507-
531, 1986.

to compare several reduced-order control-design methods. The comparisons
performed by Liu and Anderson highlight the suboptimal nature of these
methods. Specifically, several methods failed to yield stabilizing
controllers for 10% of the cases while others failed for as many as 60%. In
contrast, as reported in [68,102), the optimal projection approach yielded
stabilizing controllers for all cases considered. While the methods compared
by Liu and Anderson were most prone to failure at high authority levels, the
optimal projection results were within 20% of the IQG performance at 102-103
higher authority levels. In addition, using topological degree theory, an
upper bound has been obtained on the number of solutions of the design
equations. Letting n = plant dimension, n; = dimension of the unstable plant
subspace, h~ = compensator order, £ = number of measurements, and m = number of
controls, the number of solutions for the case n. > ny; is not greater than




min(n,m,4)-ny
; Ng < min(n,m,£),
Ne=Ty

1 , otherwise.

Hence, for the case in which the controller order is greater than the number of
inputs or outputs (so that the controller is not ill-conditioned), the
equations possess at most one solution corresponding to the global minimum.
Furthermore, since in many practical cases of interest this bound is small, it
suffices to compute each such solution to determine the global optimum. These
results along with suitable extensions to related problems have been used
widely throughout this project. For example, recent results on fixed-order
control of distributed parameter systems described in Section 2.3 were obtained
using the homotopy algorithm.

1.3 long-Range Goals of the Project

The long-range (5-10 year) goal of this project is the development of a
truly effective computer-aided design methodology for multivariable control
design. Numerical solution of the design equations would form the basis for
such a design tool. This methodology would be appropriate in an engineering
envirorment since the user need not be familiar with the mathematics of the
design equations being solved. We envision a methodology similar to finite
element modeling used routinely by structural analysts. An OPUS design package
would go far beyond currently available packages whose multivariable design
capabilities are based largely upon IQG theory.

1.4 Plan of This Report

Since this is the final report for this project our goal is to accomplish
the following objectives:

1) Review the evolution and maturation of the research plan throughout
the project;

2) Highlight the principal research accomplishments; and
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3) Summarize open problems and point out future research directions.

Detailed technical discussion of results obtained will not appear in the main
body of the report. Rather, the appendices contain a fairly complete (and
lengthy) collection of the principal research results. We note that the
ordering of the appendices is not chronological but instead reflects the most
logical order according to subject matter.

1-7
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2.0 FIXED~STRUCTURE DESIGN

2.1 Motivation

While achieving the system design specifications (stability, performance,
etc.) the control-design process must not lose sight of restrictions which
arise in controller implementation. Indeed, control-design methods which
focus primarily on performance specifications often pay a serious price by
producing controllers which are difficult, if not impossible, to implement in
practice. Hence our approach rests upon the notion of fixed-structure design.
That is, we seek to meet design specifications within a framework which
constrains the class of implementable designs. In this way the burden of
hardware implementation (sensors, processors, and actuators) can be minimized
to the greatest possible extent.

2.2 The Three Basic_ Problems

The most fundamental restriction arising in fixed-structure design is
that of the order, or dimension, of the controller. In addressing this
problem we have developed a unified treatment of three basic problems in
reduced-order design, namely, modeling, estimation, and control. These three
problems form a fundamental hierarchy of design problems in system theory,
namely, to determine a system of fixed degree which, for a given system,
approximates, estimates, or controls selected plant states. The solutions to
these problems, given in [32,29,24] (Appendix B), reveal a surprising degree of
common structure. Specifically, the solutions involve systems of 2, 3, and 4
modified algebraic Riccati and Lyapunov equations coupled by a projection
matrix (the "optimal projection”). In addition, the estimation and control
results provide transparent generalizations of steady-state Kalman filter and
LOG theory.

Although the structure of these equations is aesthetically appealing by
itself, the principal benefit for practical purposes is computational. That
is, by exploiting the structure of these equations it is possible to
significantly reduce the computational burden inherent in commonly used
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gradient search techniques. This point has been amply demonstratc~ in [63,68]
as discussed in Section 1.

2.3 Finite-Dimensional Control of Distributed Parameter Systems

The problem of controller order becomes exacerbated when the plant is
infinite dimensional since infinite-dimensional controllers cannct be
implemented precisely, while finite-dimensional plant approximations may be of
arbitrarily high order. To address thi_s problem the fixed-structure control-
design results of [24] were generalized in [37] (Appendix C) to the case in
which the plant is infinite dimensional. The resulting design equations now
comprise a system of four operator equations coupled by a finite-rank
nonselfadjoint projection operator. In spite of the infinite dimensionality of
the plant, the design equations directly characterize fixed-order, finite-
dimensional dynamic compensator gains (Figure 2-1). Corresponding results for
fixed-order finite-dimensional modeling and fixed-order finite-dimensional
state estimation can also be obtained in an analogous manner.

Application of the operator-theoretic results of [37], however, requires
finite-dimensional approximation of the design equations. In practice one
could solve the design equations for a sequence of plant approximations of
increasingly high order while keeping the controller order fixed. The limiting
controller would then serve as a nearly optimal fixed-order finite-dimensional
controller for the original distributed parameter system (Figure 2-2). This
was investigated numerically in ([122] in a collaborative project with Professor
I. G. Rosen. 1In [122] two alternative approaches were considered for obtaining
finite-dimensional controllers for infinite-dimensional systems. The first
approach, which has been widely studied, involves computing a sequence of full-
order 1QG controllers for a sequence of high-order plant approximations, while
the second approach assumes a fixed order for the dynamic controller. To
demonstrate these methods, two examples were considered, namely, a one-
dimensional parabolic (heat/diffusion) system and a hereditary (delay) system.
For each example a sequence of spline-based, Ritz-Galerkin finite element
approximations was derived for use in the control-design procedure. IQG theory
and the optimal projection approach were then used to cbtain full- and first-
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Figure 2-1. The Optimal Projection Equations For Finite-Dimensional
Fixed-Order Dynamic Compensation of Infinite-Dimensional Systems
Provide a Direct Path to Optimal Physically Realizable Controllers for
Distributed Parameter Systems
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CONVERGENCE OF SUBOPTIMAL REDUCED-ORDER COMPENSATORS

IDEA: DESIGN A SEQUENCE OF REDUCED-ORDER COMPENSATORS
WHILE INCREASING THE ORDER OF THE APPROXIMATE MODEL
AND KEEPING THE ORDER OF THE COMPENSATOR FIXED

n'" ORDER DISTRIBUTED

APPROXIMATE MODEL PARAMETER SYSTEM
DISCRETIZATION

(m g cln A B, C
AN, B C N l
n—oc
i |
OPTIMAL OPTIMAL
PROJECTION EQUATIONS PROJECTION EQUATIONS
(Matrix Form) (Operator Form)
NUMERICAL ALGORITHMS |
| A(:) ! B(g)' C(:) l n—oo I | A<:' Bc’ cc i
th (n. Fixed) h
n.- ORDER COMPENSATOR: n- ORDER COMPENSATOR:
OPTIMAL FOR n'" ORDER OPTIMAL FOR DISTRIBUTED
APPROXIMATE MODEL PARAMETER SYSTEM

Figure 2-2. Numerical Solution of the Optimal Projection Equations for
Fixed-Order Dynamic Compensation Provides a Path to the
Optimal Fixed-Order Controller for an Infinite-Dimensional System
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order controllers for each example with plant approximations up to 32nd order.
For the parabolic system the performance degradation of the first-order
controllers was only 2% compared to the full-order controllers (Figure 2-3),
while for the hereditary system the degradation was less than 10%. The
difference in implementation requirements for a first-order versus a 32nd-order
controller is, of course, considerable.

2.4 Decentralized Control

In addition to incorporating constraints on the order of the feedback
compensator, the fixed-structure approach allows additional constraints on the
camplexity of the feedback law. In particular, the results of {24] assumed a
centralized structure for the dynamic compensator. In many applications,
however, a decentralized controller architecture permits a simplified feedback
comminication structure and allows increased parallelism in the control law
execution.

The fixed-structure approach is ideally suited to the decentralized
design problem. For each fixed decentralized architecture, the design
procedure can be performed to assess the ability to meet specifications for the
given configuration. If specifications cannot be met, then the feedback
architecture can be modified to improve performance, robustness, etc.

For the case of dynamic compensation, it was shown in [76] that the
optimal projection technique provides a direct means for characterizing
decentralized controllers. The key step is the realization that each
subcontroller in the decentralized configuration must be an optimal
centralized controller when viewed as a controller for the plant and remaining
subcontrollers. This observation immediately suggests a sequential design
algorithm in which individual subcontrollers are alternately refined until
convergence is achieved. Because the method is based upon optimization
principles, performance improvement is guaranteed at each step. This technique
was demonstrated mumerically in [76] (Appendix D) where a two-channel
decentralized controller, fourth-order in each channel, was designed for a pair
of interconnected simply supported beams. The algorithm demonstrated
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convergence to a decentralized controller whose performance was within 10% of
the fully centralized controller.

For the case in which each subcontroller is a static (proportional)
feedback law, it is possible to simultaneocusly characterize the optimal gains
in each control channel without requiring a sequential approach. A thorough
treatment of this case, including robust stability and performance, is given in
[121] (Appendix D).

2.5 Sinqular Control

An important generalization of the results of (24] involves the case in
which the controller includes a static feedthrough component. One technical
issue which arises in the problem formulation is that the I, norm of a control
signal corrupted by white noise (as a result of measurement feedthrough) is
infinite. Hence the measurement feedthrough problem is only well-posed when
either the measurement noise intensity or the control weighting matrix is
singular. As is well known from the singular control literature, however,
singular problem data often lead to camplex behavior including impulsive
controls and singular arcs. The imposition of a smooth controller structure
via the fixed-structure approach thus precludes such complex behavior.

The fixed-order state estimation and dynamic compensation results of
[29,24] were partially extended to the singular case in [78,79]. Even in the
full-order case the sinqular control results are novel since standard IQG
theory yields only strictly proper controllers. The results of [78,79] were
incomplete, however, since the gains associated with certain estimation and
feedback paths were not given explicitly. For the singular estimation problem
this defect was remedied in

Y. Halevi, "The Optimal Reduced~Order Estimator for Systems with
Singular Measurement Noise," IEEE Trans. Autom. Contr., Vol. 34,
1989.

where all feedback gains were explicitly characterized. In addition, this




solution was shown to agree completely with results obtained using standard
limiting methods. For the corresponding dynamic-compensation problem the
camplete singular solution has been derived in joint research with Professor Y.
Halevi and will be reported in [130,138,139] (Appendix E).




SECTION 3.0
ROBUST ANALYSIS AND DESIGN

e EEEEEE—




3.0 ROBUST ANALYSIS AND DESIGN
3.1 Motivation

The purpose of feedback control is to achieve desirable performance in the
face of uncertainty. Although identification can reduce uncertainty to some
extent, it is often impractical and residual modeling discrepancies always
remain. For example, modeling uncertainty in flexible structures may arise in
the mass, dampina, and stiffness operators. Controllers must therefore be
robust to achieve desired disturbance rejection in the presence of such
modeling uncertainty.

3.2 Stochastic Modeling

Our approach to robust control was originally inspired by stochastic
parameter modeling within a linear-quadratic optimization framework. In a
series of early papers [1-16], D. C. Hyland explored the ramifications of a
multiplicative white noise model as a consequence of the minimum information
modeling technique based upon the Maximum Entropy Principle of Jaynes. The
intent was not to view the white noise process as a literal model of parameter
uncertainty, however, but rather to construct a tractable design model which
captures the effects of parameter uncertainty upon system performance.

An interesting feature of the Maximum Entropy modeling approach was that
the multiplicative white noise model was not to be rigorously interpreted as an
Ito differential model, but rather in terms of the Stratonovich formulation.
Recasting the Stratonovich model in terms of Ito differentials then led to
additional "correction" temms. It is precisely these terms which were shown to
play a crucial role in capturing the effects of parameter uncertainty. Such
effects include decorrelation, i.e., the decrease in cruss—correlation of
system states due to parameter uncertainty, as well as equilibration, i.e., the
tendency of state variances to equalize in the presence of high levels of
uncertainty thus rendering different states indistinguishable. These effects
of parameter uncertainty are fundamental features of high-order, lightly damped
modal systems. An interesting treatment of these ideas for structural and
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acoustic analysis can be found in

R. H. Lyon, Statistical Energy Analysis of Dynamical Systems:
Theory and Application, MIT Press, Cambridge, Ma, 1975.

For feedback design within fixed-structure design theory, the
Stratonovich model produces controllers possessing intuitively appealing
features. Specifically, such control laws exhibit high-authority control in
the low-frequency, well-modeled portion of the structure along with low-
authority, rate dissipative action in the high-frequency region [35] (Appendix
F). The ability to merge and unify these control regimes is a unique and
significant contribution of the Maximum Entropy approach.

As a control-design methodology, however, it remained to validate the
approach as a rigorous robust design technique. Optimal controllers designed
in the presence of white noise disturbances, it was reasoned, are
automatically desensitized to actual deterministic plant parameter variations.
This idea was confirmed empirically by numerical studies in [36,39] which
showed an efficient design tradeoff between performance and robustness in the
presence of structured real-valued parameter variations. Further robustness
studies confirming these results were carried out in

A. Gruzen, "Robust Reduced Order Control of Flexible
Structures," C. S. Draper laboratory Report #CSDL-T900, April
1986.

A. Gruzen and W. E. Vander Velde, "Robust Reduced-Order Control
of Flexible Structures Using the Optimal Projection/Maximum
Entropy Design Methodology," AIAA Guid. Nav. Contr. Conf.,
Williamsburg, VA, August 1986.

M. Cheung and S. Yurkovich, "On the Robustness of MEOP Design
versus Asymptotic LQG Synthesis," IEEE Trans. Autom. Contr., Vol.
33, 1988.

In spite of these results, it was clear that issues concerning stochastic
modeling, such as stochastic stability and the physical interpretation of the
model, tended to obscure the effectiveness of the technique for robust
control. Thus a crucial step in the evolution of our approach was the ability
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to show in {77] (Appendix F) that such controllers are guaranteed to be robust
for all cases in which the design equations are solvable. 1In particular, it
was shown that a second-moment stochastic stability condition in the presence
of a time-exponential cost weighting induces a Lyapunov function which
guarantees deterministic robust stability over a prescribed range of parameter
variations. This result thus provided the bridge to cross over from the world
of stochastic modeling (a statistical theory) to deterministic robustness
theory (a theory of worst-case bounds).

3.3 Robust Analysis

For a given controller, it is often necessary to assess the stability and
worst-case performance of the closed-loop system as parameters vary within a
specified range of uncertainty. This is a problem of robust analysis, whose
consideration precedes the more complex problem of robust controller synthesis.

Our principal mathematical technique in robustness analysis is Lyapunov
stability theory. Here the idea is to determine a Lyapunov function which
guarantees robust stability over a range of uncertain parameters. For linear
systems we employ the quadratic Lyapunov function

V(%) = xTPx (1)

or, equivalently, the Lyapunov equation

0=aTP+PA+R (2)
for the linear system
X =AX + W. (3)
The dual equation
0=80+QT +v (4)
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is also useful for robust performance analysis since V can be interpreted as
the intensity of the additive white noise signal w. In robust analysis one
typically replaces (4) by

0=20+QaT + 0+ v, (5)

where  is an additional nonnegative-definite matrix. Now robust stability of
the perturbed system

X = (ARAA)X + W (6)

is assured so long as

ar0 + oaaT < q. (7)

This can be seen by rewriting (5) as

0 = (a#an)Q + Q(AaxA)T + [0-@aaptoanT)] + V. (8)

Furthermore, it is also possible to guarantee robust performance since the
solution Qup of

0 = (AAA)Qp + Qua(Aaan)T + v (9)
satisfies
Qan < Q. (10)

The above technique, developed in [115] (Apperdix G), provides a simple
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approach to robust stability and performance.

To develop a more sophisticated approach one can replace (5) by

o0=20+Q@T +0@Q +V (11)
where 1(+) is now a bounding operator which satisfies

aaQ + qaaT < Q(Q) (12)
for all variations AA in a specified uncertainty set and for all nonnegative-
definite matrices Q. This approach now guarantees the bounding a priori via
(12) and the problem is to determine whether or not there exists a solution to
(11).

The a priori bounding technique shown in (11), (12) has been given a
fairly complete treatment in {123] (Appendix G). The goal in [123] was to
systematically investigate candidate choices for the function Q(-). This
investigation also provides a unified setting for particular bounds which have

been used in various control-design contexts. For example, for A=gq4,, |01| <1,
the absolute value bound

2(Q) = |30 + A7), (13)
where |:| replaces each eigenvalue by its absolute value, was proposed in

S. S. L. thang and T. K. C. Peng, "Adaptive Guaranteed Cost
Control of Systems with Uncertain Parameters", IEEE Trans.
Autom. Contr., Vol. AC-17, pp. 474-483, 1972.

On the other hand, writing A, = D1E;, the bound

2(Q) =D+ QEQ, (14)
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where D = DjD;T and E = E;TE;, was studied in

I. R. Petersen and C. V. Hollot, "A Riccati Equation Approach to
the Stabilization of Uncertain Systems", Automatica, Vol. 22,
pp. 433-448, 1986.

D. Hinrichsen and A. J. Pritchard, "Stability Radius for
Structured Perturbations and the Algebraic Riccati Equation”,
Sys. Contr. Iett., Vol. 8, pp. 105-113, 1986.

Finally, the choice

2(Q) =aQ + a-1a;08,7T (15)

corresponds to the bound arising from a multiplicative white noise model as
discussed in [77] and Section 3.2. We call (14) the quadratic bound (since it
is quadratic in Q) and (15) the linear bound (since it is linear in Q).

3.4 Robust Synthesis

The principal payoff of our robust stability and performance technique is
the ability to incorporate these bounds directly within the fixed structure
design methodology. This can be done by bounding the cost over the class of
parameter uncertainties prior to determining the feedback gains. The resulting
bound is then treated as an auxiliary cost which can then be minimized by
suitable feedback gains. The solution to this optimization problem is thus
guaranteed to yield robust stability and performance.

To carry out this procedure it is essential that the bound Q(-) be
differentiable with respect to Q. Furthermore, f1(+) will be differentiable
with respect to the feedback gains if it is differentiable with respect to 3,
(which involves gains in the control-design setting). These requirements thus
suggest the linear bound (15) ard the quadratic bound (14) as the prime
candidates for robust synthesis.




As discussed previously, the linear bound (15) was originally suggested by
a multiplicative white noise model. By incorporating this bound within the
design procedure, sufficient conditions for robust estimation and robust
control were developed in [95,119] (Appendix H). In addition, a unified
treatment of robust, reduced-order modeling, estimation, and control was given
in [89] (Appendix H).

The quadratic bound (14) has also been developed extensively within a
design context. In [101,83,94] (Appendix I) the problems of reduced-order
modeling, estimation, and control were considered via this bound. Finally,
both the linear and quadratic bounds were considered simultanecusly in [113]
(Appendix I).

3.5 Hyg Theory

The robustness theory discussed in the previous subsections addresses the
problem of real-valued structured parameter uncertainty. In many
applications, however, uncertainty is present in the form of unstructured
perturbations to the plant transfer function. A typical case is the presence
of high-frequency, unmodeled dynamics.

A mathematically rigorous approach to this problem involves defining a
suitable norm on the space of plant transfer functions to characterize
uncertainty in terms of neighborhoods of the nominal plant. The resulting Hy
theory was pioneered by Zames in

G. Zames, "Feedback and Optimal Sensitivity: Model Reference
Transformations, Multiplicative Seminorms, and Approximate
Inverses," IEEE Trans. Autom. Contr., Vol. AC-26, pp. 301-320,
1981.

while recent overviews were given in
B. A. Francis and J. C. Doyle, "Linear Control Theory with an Hy,

Optimality Criterion,"” SIAM J, Contr. Optim., Vol. 25, pp. 815-
844, 1987.




B. A. Francis, A Course in H, Control Theory, Springer-Verlag,
New York, 1987.

The most fundamental problem of H, control design is the so—called
Standard Problem considered by Francis: determine a feedback compensator
which minimizes the peak (worst-case) disturbance attenuation of the closed-
loop system. By introducing suitable weighting matrices and problem
transformations, solutions to the Standard Problem can be used to yield robust
controllers for unstructured plant uncertainty.

Current H, synthesis methods, however, possess two principal drawbacks:
they are computationally intensive and they often yield excessively high-order
controllers. These difficulties have been removed with the advent of new state
space solutions to the Standard Problem given in [117] (Appendix J) and

I. R. Petersen, "Disturbance Atteruation and H® Optimization: A
Design Method Based on the Algebraic Riccati equation," IEEE
Trans. Autom. Contr., Vol. AC-32, pp. 427-429, 1987.

P. P. Khargonekar, I. R. Petersen, and M. A. Rotea, "H® Optimal
Control with State Feedback," IEEE Trans. Autom. Contr., Vol. 33,
Pp. 786-788, 1988.

J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis,
"State-Space Solutions to Standard H, and H, Control Problems,"
Proc. Amer. Contr. Conf., pp. 1691-1696, Atlanta, GA, June 1988.

These papers characterize solutions to the Standard Problem in terms of
modified Riccati equations. The computational savings of this approach over
earlier methods is considerable, possibly two orders of magnitude. In
addition, the dynamic compensators obtained from these Riccati equatioxs are of
the same order as the plant model. This approach thus removes the principal
drawbacks of earlier H, synthesis methods.

By incorporating the fixed-structure approach we have, in addition,
obtained the most general solution thus far available for the Standard
Problem. Specifically, in [117] (Appendix J) we consicxr the minimization of
an 1, performance criterion subject to a constraint on the Hy closed-loop
performance. This multi-~norm problem formulation thus allows the designer to

3-8




perform tradeoffs between these competing performance measures. In addition we
impose a constraint on the order of the dynamic compensator to cbtain optimal
low-order feedback controllers which satisfy the H, performance constraint.
Utilizing an eighth~order norminimum phase example given in

R. H. Cannon, Jr., and D. E. Rosenthal, "Experiments in Control
of Flexible Structures with Noncolocated Sensors and Actuators,®
ATAA J. Guid. Contr. Dyn., Vol. 7, pp. 546-553, 1984.

we used these results to obtain 9 dB improvement over the corresponding LOG
design (Figure 3-1).

Immediate spinoffs of these results include the problems of model
reduction and state estimation. The Hy, model reduction problem {114]
(Appendix J) addresses one of the most fundamental problems of linear system
theory, namely, given a linear time~invariant system of degree n, find a linear
time-invariant transfer function of degree np<n which minimizes the Hy, distance
between the full- and reduced-order systems. Although the Hankel norm model-
reduction problem has been widely studied as in

K. Glover, "All Optimal Hankel-Norm Approximations of Linear
Multivariable Systems and Their L°-Error Bounds," Int. J.
Contr., Vol. 39, pp. 1115-1193, 1984.

the solution to the H, problem had not been given previousl:.

For state estimation the Kalman filter provides the least squares (I,)
optimal solution. In certain applications, however, it may be desirable to
minimize the worst-case frequency content of the error signal. This problem is
addressed in [116] (Appendix J) where the standard steady-state Kalman filter
is generalized to include a bound on the Hy norm of the error signal.

Finally, it is reasonable to expect that in practice both structured and
unstructured plant uncertainty will be present. This leads to consideration of
the Standard Problem in the presence of parametric uncertainty. Thus it is of
interest to design feedback controllers which are guaranteed to satisfy a




FREQ (HZ)
10°-3  1q¢ 10°-2 10° -1 !

~ 0.0 —1 | N
m

(=] -

-10.0 — He
T ul

:, i

T -20.0 -

> —

1 4

a -30,0 —

-l

pun | -

(&)

Z .40.0

wn -~

-5000_

-60.0 —

Figure 3-1. The IQG/He Design Equations Yield 9 dB Improvement Over The
Corresponding 1QG Design for an 8th-Order Nomminimum Phase Plant
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specified Hy, disturbance attenuation constraint over a range of parametric
uncertainty. This problem has been addressed in [105] (Appendix J) where the
results of [117] on Hy design have been merged with these of [94,119] on
parametrically robust design. Again the development has been carried out in
the context of fixed-order dynamic compensation for maximal design flexibility.
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4.0 FURTHER EXTENSIONS
4.1 Motivation

The previous sections have addressed two principal problems in control
design, namely, fixed-structure design and robustness. Both of these problems
concern fundamental issues in the practical implementation of feedback
controllers. In this section we extend these results in two directions in
order to address larger classes of design problems.

4.2 Tracking

All of the feedback control theory discussed in Sections 2 and 3
addresses the problem of feedback control for regulation in the presence of
external disturbances. Many control problems, however, are of a tracking or
servamechanism nature. While a limited class of such problems can be recast
without loss of generality as requlation problems, many important ones cannot.
For example, the standard transformations given in

H. Kwakernaak and R. Sivan, Linear Optimal Control Systems,
Wiley, New York, 1972.

B. A. Francis, A Course in H, Control Theory, Springer-Verlag, New
York, 1987.

assume that the command signals can be represented as an augmentation of the
plant dynamics. There are many important cases, such as the tracking of steps
and ramps, which must be represented by uncontrollable, unstable dynamics,
where this transformation cannot be applied. Furthermore, such
transformations ofter} ignore controller effort. To fill this gap we have
undertaken a systematic program for developing a tracking control theory
consistent with earlier developments. As a first step we have considered the
problem of regulation about a prescribed nonzero set point, which corresponds
to the step command tracking problem. Our work in this area was originally
motivated by results obtained in




2. Artstein and A. lLeizarowitz, "Tracking Periodic Signals with
the Overtaking Criterion," IEEE Trans. Autom. Contr., Vol. AC-30,
Pp. 1123-1126, 1985.

A. Leizarowitz, "Tracking Nonperiodic Trajectories with the
Overtaking Criterion," Appl. Math. Optim., Vol. 14, pp. 155~
171, 1986.

A. leizarowitz, "Infinite Horizon Stochastic Regulation and
Tracking With the Overtaking Criterion," Stochastics, 1987.

References ({67,103] (Apperdix K) present general solutions to the nonzero set
point problem for both static and dynamic controllers. The overall controller
configurations for these problems are shown in Figures 4-1 and 4~2. Note that
these controllers involve two components, namely, a closed-loop feedback
component similar to a regulator and an open-loop feedforward component which
has no counterpart in the standard theory and which cannot be obtained from
standard transformations.

Recent activities have focused on extending the nonzero set point results
to broader classes of command and disturbance signals. It turns out that the
challenging case (as with steps and ramps) involves signals generated by
unstable command or reference dynamics. As a critical first step in addressing
this problem we have considered the problem of reduced-order steady-state
observer design for unstable plants. These results appear in (125] (Appendix
K). This optimal subspace cbserver problem gives rise to yet another
projection which we dencte by u. The most general estimation problem involving
all three projections 7,v, and u has also been solved and will be reported in
[134,139)].

4.3 Sampled-Data Control

-

The discussion in the previous sections has focused on continuous-time
systems subject to continuocus~time (analog) controllers. In practice, however,
controller implementation will almost invariably utilize digital controllers
within the coritext of sampled-data control systems. Rigorous consideration of
such systems is critical, particularly for distributed parameter systems which
possess modal frequencies beyond the Nyquist rate of any digital controller.
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Hence, a rigorous theory of sampled-data control design must be developed which
accounts precisely for all effects arising from analog-to-digital and digital-
to-analog operations.

Optimal projection theory for discrete-time systems was developed in [41]
and applied to sampled-data systems in (44] (Appendix L). As a next step it is
desirable to obtain robust control results. To this end, the optimal
projection equations for reduced-order discrete-~time estimation and control in
the presence of multiplicative white noise were obtained in [54,69] (Appendix
L). After these results were cbtained, it became clear that a true sampled-
data robustness theory must account for the exponential matrix structure which
arises from the sampling process. For example, if A+AA denotes the continuous-
time dynamics matrix, where A is the nominal matrix and AA denotes uncertainty,
then the ecuivalent discrete-time dynamics matrix is given by e(ABA)h  yhere h
is the sample interval. Because of the exponential function, however, this
discrete~time dynamics matrix does not have the additive structure considered
in the discrete-time theory in {54,69]. Moreover, a linear approximation for
the exponential will not be valid in the presence of system time constants near
or above the sample rate.

Although an attempt to bound this discrepancy resulted in new
inequalities in [92] and questions of decomposition in [87] (Apperdix L), this
approach appears inadequate. The crucial clue to the most natural approach was
ultimately found in

A. R. Tiedemann and W. L. DeKoning, "The Equivalent Discrete-Time
Optimal Control Problem for Continuous-Time Systems with
Stochastic Parameters,” Int. J. Cont., Vol. 40, pp. 449-466,
1984.

which studied the propagation of multipl'icative white noise in the presence of
aA/D and D/A interfaces. Motivated by these results, we have obtained results
which extend the robust performance bounds obtained for continuous-time systems
to the sampled-data problem. Specifically, by considering the evolution of the
linear parameter uncertainty bound over the sample interval, a robust stability




condition was developed in [128] (Appendix L). This result is unique in that
it accounts directly for the exponential structure of the parameter
uncertainty.
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5.0 OPEN PROBLEMS

5.1 Motivation

The value and importance of the results obtained under this project lie
largely in the foundation they provide for future research. The purpose of
this section is to collect together various questions and problems as a guide
to future endeavors. The order of listing of these questions roughly parallels
the order of the previous sections.

5.2 Fixed-Structure Design

Since the fixed-structure design approach involves a nonconvex
optimization problem, there arise several questions concerning the structure of
the space of solutions.

+ Do there exist verifiable a priori conditions which
guarantee stabilizability of a given linear time-invariant
plant by fixed-order dynamic compensation? As in the full-
order case, one would expect such conditions to play a
fundamental role in determining the existence of solutions to
the design equations. Conversely, when the plant is known to
be stabilizable by a controller of order n., does the
underlying optimization problem always possess a solution?
Will the design equations always yield at least one such
stabilizing controller? How is the ability to find
stabilizing controllers affected by the choice of weightings
ard noise intensities?

+ Is it possible to design all subcontrollers of a
decentralized dynamic compensator simultaneously without
performing sequential iterations? If a sequential algorithm
is used, then under what conditions is the algorithm
guaranteed to find the global minimum?

+ How can the fixed-structure approach be extended to address
the simultaneous stabilization problem, i.e., the problem of
finding a single controller which stabilizes several
different plants simultaneously?

*+ The I, model reduction theory of [32] (Appendix B) can
readily be extended to the problem of characterizing optimal
finite-dimensional models for infinite-dimensional systems
using the method of [37] (Appendix C). Can such finite-
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dimensional models serve as useful lumped approximations to
distributed parameter systems? Can the I,/H, model reduction
theory of [114] (Appendix J) be used similarly?

+ How can the fixed-structure approach be used to design
controllers with additional constraints on their internal
structure, such as prespecified pole locations? This
question is the basis for ongoing work in [131].

5.5 Robust Analysis and Desiqn

There exist a variety of open questions concerning the conservatism and
effectiveness of the parametric rcbustness bounds and the H, design equations.

«  For which class of parameter uncertainty structures are the
quadratic Lyapunov bounds nonconservative? How can the
robustified design equations be used iteratively to reduce
design conservatism?

+ The multiplicative noise model was shown in (77] (Appendix F)
to guarantee deterministic robustness. However, this result
involved a uniform right shift rather than the variable left
shift arising from the Stratonovich interpretation of the
multiplicative noise. Can it be shown rigorously that the
Stratonovich model yields robust controllers? Furthermore,
can the relationship between Stratonovich design and positive
real controllers for modal systems be made precise?

+ The basis for the H, design results obtained in [117]
(Apperdix J) is the quadratic bound developed for
parametrically robust control in [94] (Appendix I). This
raises the following question: Does there exist an
alternative interpretation of the linear bound which can be
used to guarantee disturbance attenuation for some specified
class of disturbances?

. The Hy control design results are virtually identical to the
optimality conditions for the problem of minimizing an
exponential-of-quadratic cost criterion as considered in

P. R. Kumar and J. H. van Schuppen, "On the Optimal Control of
Stochastic Systems With an Exponential-of-Integral Performance
Index," J. Math., Anal. Appl., Vol. 80, pp. 312-332, 198l.

P. Whittle, "Risk~Sensitive Linear/Quadratic/Gaussian Control,"
Adv. Appl. Prob., Vol. 13, pp. 764-777, 1981.




A. Bensoussan and J. H. van Schuppen, "Optimal Control of
Partially Observable Stochastic Systems With an Exponential-of-

Integral Performance Index," SIAM J. Contr. Optim., Vol. 23, pp.
599-613, 1985.

P. Whittle and J. Kuhn, "A Hamiltonian Formilation of Risk-
Sensitive Linear/Quadratic/Gaussian Control,™ Int. J. Contr.
Vol. 43, pp. 1-12, 1986.

Is it possible to directly extend these results using the
fixed structure approach? Also, can the fixed-structure
approach be used to extend the Maximum Entropy theory of

D. Mustafa and K. Glover, "Controllers Which Satisfy a Closed-
Loop Hy, Norm Bourd and Maximize an Entropy Integral,” Proc. IEEE
Conf. Dec. Contr., Austin, TX, December 1988.

+ The I,/H, model reduction theory given in [114] (Appendix J)
minimizes an I, criterion subject to a constraint on the Hy
distance between the full- and reduced-order models. Can the
L, criterion be neutralized so as to obtain a "pure" H,
result as is done in [117] (Apperdix J) for full-order
control design? Can the resulting H, solution be shown to
actually characterize the H,, optimal reduced-order model by
taking the H, constraint to be sufficiently small? Similar
questions apply to fixed-order control design. For example,
does there exist a "pure" H, reduced-order control design
theory? Can these results be shown to be necessary as well
as sufficient?

+ What is the generalization of the H, control and estimation
results to the singular problem? To the cross-weighting
problem?

+ 1Is it possible to extend the I, and Ly/Hy, model reduction

results to allow the reduced-order model to be nonstrictly
proper?

5.4 Tracking and Sampled-Data Control

With regard to tracking and sampled-data theory a number of problems
remain to be explored.




Is it possible to develop a methodology for designing
tracking controllers which applies to a broad range of
signal models? For example, the command signal may be known
exactly in advance (such as a specified square wave) while,
at the other extreme, it may only be known to be an element
of a large class of signals. For example, step commands are
known to be steps but their exact level is not known until
they actually occur during operation. Other command signals
may only be known to be outputs of systems driven by random
noise. A classification scheme based upon the degree and
type of priori knowledge of the command signal should lead to
a hierarchy of control designs ranging from poorly known to
well-known command signals. In addition, it is important to
distinguish between a priori command signal knowledge
available during the design phase and command signal
knowledge available during operation. The differences
between these cases can be used to account for differing
assumptions appearing in the literature. Relevant references
include

B. D. O. Anderson and J. B. Moore, Linear Optimal Control,
Prentice-Hall, Englewood Cliffs, NJ, 1970.

C. D. Johnson, "Accommodation of External Disturbances in Linear
Regulator and Servomechanism Problems," IEEE Trans. Autom.
Contr., Vol. AC-16, pp. 635-644, 1971.

E. J. Davison and A. Goldenberg, "Robust Control of a General
Servamechanism Problem: The Servo Compensator," Automatica, Vol.
11, pp. 461-471, 1975.

E. J. Davison, "The Robust Decentralized Control of a General
Servomechanism Problem," IEEE Trans. Autom. Contr., Vol. AC-21,
pp. 14-24, 1976.

E. J. Davison, "The Robust Control of a Servomechanism Problem
for Linear Time-Invariant Multivariable Systems," IEEE Trans.
Autom. Contr., Vol. AC-21, pp. 25-34, 1976.

E. J. Davison, "Multivariable Tuning Requlators: The
Feedforward and Robust Control of a General Servomechanism
Problem," IEEE Trans. Autom. Contr., Vol. AC-21, pp. 35-47,
1976.

C. A. Descer and Y. T. Wang, "Linear Time~Invariant Robust
Servomechanism Problem: A Self-Contained Exposition," in

Control and Dynamic Systems, Vol. 16, C. T. Leondes, Ed., pp. 81-
129, Academic Press, New York, 1980.




E. J. Davison and I. J. Ferguson, "The Design of Controllers for
the Multivariable Robust Servomechanism Problem Using Parameter
Optimization Methods," IEEE Trans. Autom. Contr., Vol. AC-26, pp.
93-110, 1981.

J. D. Turner, H. M. ¢Chun and J.-N. Juang, "Closed-Form Solutions
for a Class of Optimal Quadratic Tracking Problems," J. Optim.
Thy. Appl., Vol. 47, pp. 465-481, 1985. C

J.-N. Juang, J. D. Turner and H. M. Churi, "Closed-Form Solutions
for Feedback Control with Terminal Constraints," AIAA J. Guid.
Contr. Dyn., Vol. 8, pp. 39-43, 1985.

W. E. Schmitendorf and B. R. Barmish, "“Robust Asymptotic
Tracking for Linear Systems with Unknown Parameters,"
Automatica, Vol. 22, pp. 355-360, 1986.

How can the new subspace projection u, which arises in the
observer design problem in [125] (Appendix K), be used to
design servocompensators? That is, can u be used to design
controllers which track the output of an unstable command
model?

Is it possible to develop a theory of robust sampled-data
controller synthesis which accounts directly for the
exponential structure of the equivalent discrete-time model?
The results of [128] (Appendix L) provide a starting point in
this regard.

What is the form of the equations for the Hy-constrained
discrete-time control-design problem?
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Abstract

OPUS (Optimal Projection for Uncertain Systems) provides new machinery for
desgigning active controllers for suppressing vibration in flexible structures. The
purpose of this paper is to review this machinery and demonstrate its practical value
in addressing the structural control problem.

1, Introduction

For many years it has been widely recognized that the desire to orbit
large, lightweight space structures possessing high-performance capabilities would
require active feedback control techniques. More generally, the need for such
techniques may arise due to the combinations of either 1) moderate performance
requirements for highly flexible structures with low~frequency modes or 2) stringent
performance requirements for semi-rigid structures with relatively high~frequency
modes (Figure 1). Applications include pointing, slewing, and aperture shape control

for optical and RF systems.
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RESPONSE RANGE OF INTEREST
“ODES

“Small” structures
= Older generaiion of spacecratt

® Most civil engineering struclures
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structures. elc
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» Stringent poinling accuracy 5""7777777777777.,
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Figure 1, The Need for Active Structural Control Arises From
Stringent Performance Requirements cr Low-Frequency Modes
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DISTURBANCES

STRUCTURE

aD0-HAP>CHO>»
Vo0V ZmMn

PROCESSORS (

Figure 2. Vibration Control Systems Utilize Sensors, Processors and Actuators

following

1.

to Suppress Disturbances

The problem of active vibration suppression (Figure 2) entails the

considerations:

Multiple, highly coupled feedback loops. The potentially large number of
gengors and actuators leads to a fully coupled mulri-inpurt, multi-output

feedback cantrol system,

Limited actuator power. The control authority available from on-board

actuators is limirved by weight, size, cost and power considerarions.

High-dimensional models. Large structures subjected to broadband

disturbances are typically represented by high-order finite element models.

Limited processor capacity. Reliability and cost conciderations limit the
processor capacity available for on-board real-rime implementation of the

control system.

Highly uncertain models with structured uncertainry. Finire element models
often exhibit significant error particularly as modal frequency increases.
Although modal testing and related idenrification methods may be used to
jmprove modeling accuracy, residusl uncertainty always remains anc
unpredictable on-orbit changes due to eging, thermal effects, etc., must be

tolerated.
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6. Stringent performance requirements. Since actijve gpace structure control
is most relevant in precision applications, it can readily be expected that

performance specifications will be particularly stringent,

7. Design efficiency. Because of implementation complexity due to the
presence of multiple loops, high dimension, and high levels of uncertzinty,
the control design approach should efficiently utilize borh synthesis and

analysis techniques (Figure 3).

SYNTHESIS

ANALYSIS (4

Figure 3, Control-System Design Must Efficiently Utilize Both
Synthesie and Analysis Techniques

These considerarions pose a considerable challenge to the state-of-the-art
in control-design methodologies. For example, the presence of multiple, coupled
feedback paths essentially precludes the effectiveness of single-loop design
techniques. The sheer number of loops, their interaction, and the need to address a

host of other issues render such methods inefficient and unwieldy.

In addition to the presence of mulriple loops, the high dimensionality of
dynamic models places a severe burden on control-design methodologies. For example,
although LQG (linear-quadratic~Gaussien) design is applicable to multi-loop problems,
such controllers are of the same order as the structural model (Figures 4 and 5).
Thus LQG and similar high-order controllers can be expected to plsce an unacceptable
computational burden on the real-time pro~essing capability., Hence ir is not
surprising that a variety of techniques havy heer v _osed to reduce the order of LQG

controllers. A comparison of several such me%aods is given in [1].

All of the above difficulties are severely exacerbated by the fact that the
dynamic (i.e., finite element) model upon which the control design is predicated may
be highly inaccurate in epite of extensive modal identificatjon. Hence, applicable

control-design methodologies must account for modeling uncertainties by providing

robugt (i.e., insensitive) controllers, Furthermore, because of stringent
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= Ax+ Bu + wy

y = Cx+wy

ueR M yeR?

X = Acxe * Bgy

u = Cexe

FULL-ORDER CONTROLLER x.¢R"
STEADY-STATE PERFORMANCE CRITERION

JAcBCe) =tl£n&E[xTR1x +uTRyu)

Figure 4. LQG Theory Addressces the Problem of Desgigning a
Quadratically Optimal, Full~Order Dynamic Compensator

FULL-ORDER CONTROLLER GAINS

Ac=A-0QX-Xp
8. =acTv;!
¢ 2

=-R-18TpP
Cc=-R;

SEPARATED RICCATI EQUATIONS

0= AQ + QAT + v, - afa (Kaiman Filter)
0=ATP+PA+Ry-PXP (Regulator)
s=pa-la’ y=¢Tvic
2 2

Figure 5. The Optimal Full-Order (LQG) Controller Is Determined by a
Pair of Separated Riccari Equations
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performance requirements, robust control design must avoid congservatism with respect
to modeling uncertainty which may unnecessarily degrade performance. A salient
example of congervatism is illustrated in Figure 6. If uncertainty in the modal
frequency is complexified in a transfer function setting, then the resultring pole
location uncertainry has the form of a disk. This disk, however, intersects rhe
right half plane in violation of energy dissipation. Hence one source of
congervarism is the inability to differentiate between physically distinct parsmeters

such as modal frequency and modal demping.

ImA
RIGHT-HALF-PLANE

POLES ARE PHYSICALLY

/ IMPOSSIBLE

Re A

Figure 6. Complexification of Real Parameters May Lead to Robustnegs Conservatism

Although classical methods are inappropriate for vibration control, a wide
variety of modern techniques are avajlable. These include borh multi-loop frequency-
domain methods and rime-domain techniques. A comprehensive review of such methods
will not be attempted here., Rather, we shall merely point out aspects of several
methods which motivate the philosophy of OPUS development,

As is well known, dynamic models can be transformed (at least in theory)
between the frequency and time domains. Significant differences arise, however, in
atrempting to represent modeling errors. Specifically, model-error characterization
of a particular type, which is natural snd tracrable in one domain, may become
extremely cumbersome when transformed into the other domain. Fo- example, consider a
stzte gpace model with parameter uncertainties arising in the system matrices
(A,B,C). Upon transforming to a frequency domain model G(s) = C(sI-A)-IB the

parsmetric uncertainties may perturb the transfer function coefficients in a
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complicated manner. A more natural measure of uncertainty for transfer functions has
been developed in (2] where system uncertsinty in the frequency domain is modeled by
means of normed neighborhoods in the H-infinity ropology. There are limitations with
this approach, however, in designing controllers for vibration suppression. For
example, as shown in Figure 6, complexificarion of real-parameter uncertainties cuch
as modal frequencies may yield unnecessary conservatism, while norm bounds oftren fail
to preserve the physical structure of parameter variarions. A case in point is the
lightly damped oscillator. As shown in [A42], norm bounds predict stability over a
frequency range on the order of the demping while in fact the oscillator is
unconditionally stable. Furthermore, with regard to processor throughpur rradeoffs,

modern frequency-domain methods typically yield high~order controllers.

Although LQG addresses performance/actuator and performance/sensor
tradeoffs in a multi-loop setting, it fails to incorporate modeling uncertainty.
Thus it is nor surprising, as shown in [3]), that LQG designs fail to possess
guaranteed gain margin, Since LQC designs lack such marging, attemprs have been made
to apply frequency-domain techniques to improve their characteristics. One such
method, known as LQG/LTR ((4,5]) seeks to recover the gain margin of full-srate-
feedback controllers. Specifically, full-state~feedback LQR controllers are
guaranteed to remain stable in the face of perrurbarions of the input marrix B of the
form aB where a€(1/2,2). As shown in [6,7), however, the full-stare-feedback gain
margin fails to provide robustness with respect to perturbations which are not of
this form, For inastance, the example given in [6] with B = [0 1IT can be
destabilized for suitable performance weightings with perrturbation B(E) = (€ 1]T for
arbitrarily small € in gpite of the 6 dB margin. Furthermore, since LQG/LTR loop
shaping is based upon sgingular value norm bounds, trearment of physically meaningful
real parameter variations may lead to unnecessary conservatism. Several approaches

have been proposed for circumventing these difficulties (see, e.g., [8]).

The importance of addressing the problem of structured uncertainty in
finite element modele cannot be overemphasized. Structural characteristics such as
modal frequencies, damping ratios, and mode shapes appear explicitly in (A,B,C)
state-space models as physically meaningful parameters. Uncertainty in mode shapes,
for exasmple, which sppear as columns of the B matrix, cannot in general be expected
to he of & multiplicarive form in accordance with tradirjonal gain-margin
specifications. This is precisely the problem illustrated by the example of (6]
discusged above. Furthermore, uncertginties in modal frequencies and damping rarios
must be carefully differentiated since, roughly spesking, mocal frequency
uncertainties affect only the imaginary part of the pole locatrion while demping

uncertainty affects the real part. Although these and related observations
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concerning uncertainty in the dynamic characteristics of lightly damped structures
may be self evident, they have remained largely unexploited in srandesrd control-

design methods.

2. QPUS: New Machinery for Control-System Design

In view of the ability of LQG theory to synthesize dynamic controllers for
mulvi-input, multi-output controllers, it is not surprising that LQGC forms the basis
for a variety of structural control methods. However, as discugsed previously, LQC
lacks the ability to address performance/processor and performance/robustness
tradeoffs. This situation has thus motivated the development of numerous variants of
LQG which entail additional procedures which attempt to remedy these defects. OFUS,
however, is distinctly different, Rather than append additional procedures to LQG
design, OPUS extends LQG theory itself by generalizing the basic underlying

machinery.

As shown in Figure 5, the basic machinery of LQG consists of a pair of
separated Riccati equations whose solutions serve to directly and explicitly
synthegize the gains of an optimal dynamic compensaror. The contriburjon of OPUS ie
to directly expsnd this machinery. The overall approach is illustrated in Figure 7
which portrays two disrinct generalizations of the basic LQG machinery. As Figure 7
illustrates, thece generalizations can be developed individually when either low-
order or robust controllers are desired. The appealing aspect of OPUS, however, is

the ability to extend LQG to address both problems simultaneously in a unified

manner.

LQG
2 RICCAT!
(SEPARATEO)

LOW-ORDER

CONSTRAINTY PARAMETER

UNCERTAINTIES

us
2 RICCATI + 2 LYAPUNOV

op
2 RICCATI + 2 LYAPUNOV
{COUPLED BY UNCERTAINTY TERMS)

{COUPLED BY OPTIMAL PAOJECTION)

LOW-ORDER
CONSTRAINT

PARAMETER
UNCERTAINTIES

OPUS
2 RICCATI + 2 LYAPUNOV
{COUPLED 8Y OPTIMAL PROJECTION
AND UNCERTAINTY TERMS)

Figure 7. The Standard LQG Result Is Generalized by Both the Fixed-Ovder
Constraint and Modeling of Parameter Uncertainties
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In the following sections the generalizations depicted in Figure T will be
reviewed following the left branch., That is, the optimal projection approach to
reduced~order controller design will first be discussed in Section 3 without
introducing plant uncertainties. In Section 4 the reduced-order constrajnt will be
retained while considering, in addition, uncertainties in the system model. In each
cage the discussion will focus on the underlying ideas with a minimum of technical

detail.

Clearly, in order for a novel design methodology to be of practical value
it must be computationally tractable. tlence Section 5 will present an overview of
the current state of algorithm development for solving rhe OPUS decign equations,
Finally, Section 6 will briefly summarize further OPUS generalizations of LQG theory

which are relevant to structural control.

3. Extengions of LQG to Reduced-Order Dynamic Compensation

The simplest, most direct way to obtain optimal reduced-order controllers
is to redevelop the standard LQG result in the presence of a constraint on contrroller
dimension (Figure 8). The mathemarical technique required to do this is remarkably
straight forward. Specifically, rthe structure and order of the controller are fixed
and the performance is optimized with respect to the controller gains. The resulting
necessary conditions obtained using Lagrange multipliers thus characterize the

optimal gaing.

HIGH-ORDER PLANT x.R"

ucRM th'

Xe S Agxe + Bpy

u=Caxe

LOW-ORDER CONTROLLER xccR"
STEADY-STATE PERFORMANCE CRITERION
J(AcBe.Ce) = lim E(xTRyx + uTR,u)

Figure 8. In Accordance With On-Board Processor Requirements, a Reduced-Order
Constraint Is Imposed on the Dimensjon of the Dynsmic Compensator
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This parameter optimization approach as such is not new and was
invest jgated extensively in the 1970's. Typically, however, the optimality
conditions were found to be complex and unwieldy while offering little insighr and

requiring gradient search methods for numerical solution.

One curious aspect of the pasrameter optimijzation literature is that no
attempt was made to actually use thig direct method to rederive the LQG result
itgelf, Such an exercise, it may be surmised, might reveal hidden structure within
the optimality conditjons which would shed light on the reduced-order case. Indeed,
such an approach led to the realization that an cblique projection (idempotent
matrix) is the key ro unlocking the unwieldy optimality conditions ([A7,A17]).
Although the result is mathemat:~ally srraightforward, it is by no means obvious
gince in the full-order (LQG) case the projection is the identity and hence not

readily apparent.

By exploiting the presence of rhe projecrion, rhe necessary condirjons can
be transformed into a coupled system of four algebraic matrix equations consisting of
a pair of modified Riccati equations and a pair of modified Lyapunov equations
(Figure 9). The coupling is via the oblique projection T which appears in all four
equations and which is determined by the solutions a and ; of the modified Lyapunov
equationg. A satisfying fearure of the optimality conditions is that in the full-
order case the projection becomes the identity, the modified Lyapunov equations drop
out, and, since 11 = 0, the modified Riccari equarions specialize to the usual
separated Riccari equations of LQG theory. Since, furthermore, G = [ = nxn jdentiry,

the standard LQG gain expressions are recovered.

Alrhough the modified Riccari equations specialize to the standard Riccari
equations in the full-order case, the modjfied Lyapunov equations have no counterpart
in the standard theory. The role of these equations can be understood by considering
the problem of optimal model reducrjon alone. For this problem the oprimal reduced-
order model is characterized by a pair of coupled modified Lyapunov equations
(see [A22]). Thus the modified Lyapunov equarions arising in the reduced-order
dynamic-compensation problem are directly analogous to the modified Lyapunov
equations arising in model reduction alone. The modified Lyapunov equarions arising
in the control problem, howeyver, are intimately coupled with the modified Riccaii
equationg. Hence it cannot be expected that reduced-order control-design techniquec
based upon LQG will generally yield optimal fixed~order controllers (Figure 10). It
is interesting to note that several such methods discussed in {1} are based upon
bslancing which was shown in [A22] to be suboptimal with respect to the quadratic

(least squares) optimality criterion.




272

REDUCED-ORDER CONTROLLER GAINS

Ac = I'(A-QS-2P)GT
- 1% -1

Bc = rocTv;

Ce = -RyBTPGT

COUPLED RICCATI/LYAPUNOV EQUATIONS

0=AQ + QAT +V, - QX0 + r0%Qr7,
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ap = e™r' IGY =1q,

r=GT = QPGP 1, 217

X = BR;'8T T=cw;'c

Figure 9. The Oprimal Reduced-Order Compensgator Is Determined by a
Pajr of Modified Riccati Equations and a Pair of Modified Lyapunov Equatijons
Coupled by the Oblique ProjectionT
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Figure 10. The Optimal Projection Equations Provide a Direct Path to
Optimal Reduced-Order Dynamic Compensarors
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In summary, the optimal projection equations for reduced-order dynamic
compensation comprise a direct extension of the bagic LQG machinery to the reduced-
order control problem. The deeign equations, which reduce ro the standard LQGC resulr
in the full-order case, provide direct synthesis of optimal reduced~order controllers

in accordance with implementation constraints.

4, Exrensions of LQG to Uncertain Modelinp

Two fundamental sources of error in modeling flexible structures are
truncated modes and parameter uncertainties. Since the optimal projection approach
permite the utilization of the full dynamics model, modal truncation can be largely
avoided. There remains, however, a tendency to truncate poorly known modes and thus
it is essential to incorporate a model of parameter uncertainty in both well-known
and poorly known components of the system. Hence rhe problem formulation of Figure 8
is now generalized in Figure 11 to include uncertain parameters o appearing in the
A, B and C matrices. The parameter o; is asgumed to lie within the interval [-si.si]
in accordance with identification accuraey. Clearly, when uncer-ainty ig absgent,

i.e., when Ai' Bi. Ci = 0, the reduced~order design problem of Figure 8 igs recovered.

HIGH-ORDER, UNCERTAIN PLANT

= Stochastic disturbance model
s Deterministic parameter uncertainty model

IUll 5;5‘

X = (A+ZojA)x + (B+ZoB)u + wy

y = (C+XoiC)x + wy

u Yy
ALx. + By
xc- 1 cxc y-:
C.x.+D.y:
- ]
U= ek, ey

LOW-ORDER CONTROLLER

* Dynamic (strictly proper)
= Static (constant gain)
= Dynamic/static (nonstrictly proper)
Figure 11. Robust Optimal Projection Design Is Based Upon a

Hybrid Uncertainty Model Involving a Determiniestic Parameter Uncertainty Model
and & Stochastic Disrurbance Model
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A salient feature of the design model is that uncertainty is modeled in two
distinctly different ways. External uncertainty appearing as additive white noise is
modeled stochastically. Such a model appears appropriate for disturbances such as
coolant flow for which only power spectral data are available. On the other hand,
internal uncertainty appearing as parameter variations is modeled determinigtically.
Such a8 model appears appropriate for uncertainty arising from directly measurable
quantities such as mass and stiffness. Thus the overall uncertainty model is hybrid
in the sensge that it utjlizes both deterministic and stochastic characterizations of

uncertainty.

A natural performance measure which accounts for both types of uncertainty
characterization involves the usual LQG quadratic criterion averaged over the
disturbance statistics and then maximized over the uncertain parameters (Figure 12).

Hence this performance measure incorporates on the average and worst case aspects in

accordance with physical consideratrions.

PERFORMANCE CRITERION

J(AcBeCo) = sup lim sup E [xTRqx + 2xTRy2u + uTRou)
4 t—ec
Worst- Steady- Average Quadratic
Case State
Over Over
Paramelers Disturbance
Statistics

ROBUST PERFORMANCE PROBLEM

Minimize J(A¢,B¢,C¢) over the class of robustly
stabilizing controllers (A¢,B¢,Cc)

Figure 12. Performance Is Defined To Be Worst Cace Over the Uncertain Parameters
and Average Over the Disturbance Statistics

&he resulting Robust Performance Problem thus involvea determining the
gaing (Ac'Bc‘cc) to minimize the performance J. The static gain Dc can also be
included but will not be discussed here. Despite the apparent complexity of the
problem, remarkably simple techniquee can be used. Specifically, first note that

after taking the expected value the performance J has the form

J(A_,B ,C ) = sup lim sup tr Q(t)R, (4.1)
e*Pet e Ty r—mre
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where "tr% denotes trace of a metrix, Q(t) is the covariance of the closed-1oop
gystem, and R iz an augmented weighting marrix composed of Rl' sz and Rz. The
covariance Q(t) satisfies the standard Lyapunov differential equation

Q= (AToa)e + qarToanT + v, (4.2)

where A is the closed-loop dynamics, Ai is composed of Ai. Bi and Ci, and V is the
intenaity of external disturbances for the closed-loop system including the plant and

measurement noise.

Two distinct approaches to this problem will be considered. The first
involves bounding the performance over the class of parameter uncertainties and then
choosing the gaing to minimize the bound. Since bounding precedes control design
this approach is known as robust design via a priori performance bounds. The second
approach involves exploiting the nondestabilizing nature of structural systems via

weak subgsystem interaction.

4,1 Robust Degign Via A Priori Performance Bounds

The key step in bounding the performance (4.1) is to replace (4.2) by a

modified Lyapunov differential equation of the form

Q=Ag+ oa" + W) + v, (4.3)

where the bound ¥ satisfies the inequality

20, (AQ+ QA ) < w(Q) (4.4)

over the range of uncertain parameters o, and for all candidate feedback gains. Note
that the inequality (4.4) is defined in the sense of nonnegative-definite marrices.

Now rewrite (4.3) by appropriate addition and subtraction as

Q= (MLoA)Q + QAT AT+ #(Q) - T, (A,05087) + V. ) (4.5)

Now subtract (4.2) from {(4.5) to obtain

Q- Q= (MEh)@R + @O AToAa)T + W@ - Lo, (a,00h. (4.6)
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Since by (4.4) the term
¥(@ - To, (AQuQh)) (4.7)
is nonnegative definite, it follows immediately that
Q <9 (4.8)
over the class of uncertain parameters. Thus the performance (4.1) can be bounded by

8 q; oR
J(A_,B_.C) < J(A,B .C) & :::‘n- QR. {4.9)

The auxiliary cost J is thus guaranteed to bound the actusl cost J. This leads to

the Auxiliary Minimization Problem: Minimize the suxiliary cost J over the

controller gains. The advantage of this approach is that necessary conditions for
the Auxiliary Minimization Problem effectively serve ac gufficient conditions for
robust performance in the original problem. Since the bounding step precedes the
optimization procedure, this approach is referred to as robust design via a priori
performance bounds. This procedure is philosophically similar to gusranteed cost
control ((9,10}). Note rhat gince bounding precedec optimization, the bound (4.4)

muet hold for all gains since the optimal gains are yer to be determined.

To obtain sufficient condirions for robust stability, the bounding funcrion
¥ must be specified. Since the ordering of nonnegative-definite matrrices appearing
in (4.4) is not a rotal ordering, & unique lowest bound should not be expected.
Furthermore, each differentiable bound leads to a fundamental extension of the
optimal projection equarions and thus of the basic LQG machinery. In work thus far,
two bounds have been extensively investigated. Only one bound, the right
shift/multiplicative white noise bound, will be discussed here. The strucrured

stabilirty radius bound introduced in [11,12] is discussed in [A43].

The right shift/multiplicative white noice bound investigated in [A29,A41)}

is given by
w@ = L5, (a,q+q "2 0ah, (4.10)

where a, > 0 are arbitrary scalars. Note that this bound consists of two disrincr

parts which must appear in an appropriate rario. The firsr rerm aig arises naturally
a.t
when an exponential time weighting e ' is included in the performance measure. As

is well known ([13]) this leads to a prescribed uniform stability margin for the
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closed-loop system (Figure 13)., A uniform stability margin, no marter how large,
however, does not guarantee robustness with respect to arbitrary parameter

varjations. The complementary second term G;IAiQA§ is crucial in rhis regard,

=Ax * x=(A+al)x,a>0

e

[V N N

3
)

Re
APPLY CONTROL-DESIGN TECHNIQUES
TO RIGHT-SHIFTED OPEN-LOOP SYSTEM
=> UNIFORM STABILITY MARGIN
(Anderson and Moore, 1969)

Figure 13. Open-Loop Right-Shifted Dynamics Arising From Exponential Cost Weighting
Lead to a Uniform Closed-Loop Stability Margin

Although terms of rhe form ;iéxf are unfamjliar in robust control design,
they arise naturally in srochastic differenrial equarions with mulriplicarive whire
noigse. That is, if the uncertain paramerers o, are repleced by white noijse processes
entering multiplicarively rather than additively, then the covariance equation for Q
automatically includes terms of the form Eiaxf' The literature on systems with
multiplicative white noise is quite extensive; see (A38] for references. It ghould
be stressed, however, rhat for our purposes the multiplicarive whire noise model is
not interpreted literally as having physical significance. Rather, mulriplicative
white noise can be thought of as a useful design model which correcrly capturee the
impact of uncertainty on the performance functional via the srtare covarijance.
Furthermore, just as the right shifr term alone does not guarantee robustness,
neither does the multiplicative white noise term. Both terms must appear
simulraneously. Roughly spesking, since multiplicarive white noise disturbs the
plant though uncertain parameters, the closed-locp system is automatically

desensitized to actua] parameter variations.




After incorporating the right ghift/mulriplicarive white noise bound (4.10)
into (4.3) to obtain a bound J for the performance, the optimal projection equations
can be rederived following exactly rhe same parameter optimjzation procedure
discussed in Section 3. Again, the mathematics required is but a srraightforward
applicarion of Lagrange multipliers. The additional bounding rerms are carried
through the derivarion to yield a direct generalizarion of the oprimal projection

equations shown in Figure 14 with gains given in Figure 15.

_ T T -1, A 1T AT SR o ¢
0= AsQ + QAS +AQA° + V1 + (AR 25’ s)Q(A-BR 25‘ s) - QSVZSQS + rle!lszsr1

- aT T -1,78 -1, Tt T,To-1,
0= AgP+PAS+A PA+ Ry + (A-QuVp) TP(A-0gV o) - PRI + 1T P LRGP er,

= o6+ 8 AT -1.7 1 TT
0= (Ay-BgR)eP)Q + Q(Ag-BoR)cPg) ' +QgVogl g= 705V 26047

- . .TA. A -1 Tol, T.Tg!
0= (Ag0gVpsCe) P+ PIAG-0gV 5sCo) * T gRogly 7 P gRosfyr,

Figure 14, The Robustified Optimal Projection Design Equations Account for Both
Reduced-Order Dynamic Compensation and Parametric Uncertainty
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Figure 15, The OPUS Controller Cains Are Explicitly Characterized ag &
Direct Generalizarion of the Classical LQG Gains
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The robustified optimal projection equations comprise a system of four
marrix equarions coupled by both the optimal projection and uncertainry rerms. When
the uncertainty terms are abgenr, the oprimal projection equationt of Fipgure 9 are
immediately recovered. On the orher hand, if the order of the controller is set
equal ro the order of the plant, then all terms involving T, cen be delered.‘ R
However, in rhis case rhe modified Lyapunov equations do not drop out since Q and P
still appear in the modified Riccari equations., Hence the basic machinery of LQC is
again exrended to include a pair of Lyapunov equations coupled to a generalizarion of
the standard LQG equations. Ir is interesring to note thar a relared resulr in the
context of multiplicative noisec also appcared in the Soviet lirerarure ([14)). Ir
should also be pointed out rhar alrhough the modified Lyapunov equations arising in
the reduced-order control-design problem have analogues in model reducrion, rhe
modifi.. Lyapunov equations appearing in the full-order robustified equarions
represent new machinery not anticipated in robustness rheories. Hence using
straightforward mathematical techniques, the basic LQC machinery has again been

extended in novel directions,

Solving rhe design equarions shown in Figures 14 and 15 yields controllers
with guaranteed levels of robustness. The actual robustness levels may, however, be
larger than specified by a ariori bounds. Thus, to achieye desired robusrificarior
levels for the uncertainty structure specified by the a priori bounds, rhe desipgn
proccdure may be utjlized within an irerarive synthesis/analysis procedure

(Figure 16).

SYNTHESIS

STABILITY AND
— — —» PERFORMANCE
GUARANTEED

CONSTRUCT _ _ _ DESIGN CONTROLLER
BOUNDS TO MINIMIZE BOUNDS

CHECK ACTUAL
STABILITY AND
PERFORMANCE N
ROBUSTNESS

ANALYSIS

Figure 16. Optimal Projection/Cuaranteed Cost Control Provides
Direct Synthesis of Robust Dynamic Compensators

4.2 Robusr Design Via Weok Subeystem Interaction

The mechanism by which LQC was robustified in Secrion 4.1 avolved bounding
the performance over the class of narameter uncerraintics and then derermining

optimal controller gains for the performance bound. As discussed in Section 2,
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however, flexible strucrures possess special properties which may, in addirion, be
exploited to achieve robustnees. Specifically, aside from rigid-body moces, energy
dissipation implies that mechanical structures are open-loop stable regardless of the
level of uncertainty. That is, flexible structures possess only nondestabilizing
uncertainties. llence, in the closed loop, a2 given controller may or may not render a
particular uncertainry destabilizing. A priori bounds on controller performance
must, however, be valid for all gains since bounding precedes oprimizarion. Hence, a

priori bounding may in certain cases fail to exploit nondestabilizing uncertainties.

A familjar example of a nondestabilizing uncertainty involves uncertain
modal frequencies. Such an uncerrainty will not, of course, desrabilize an
uncontrolled (open-loop) structure. If particular modal frequencies are poorly known
rthen it is clearly advisable to avoid applying high authority control. Hence, rather
than the right-shift approach of Figure 13, ir appears advantageous {although, ar
first, counterintuitive) to urilize jusr rhe opposire, namely, a lefr shifr
(Figure 17). TFurthermore, in view of the fact that uncertainty usvally increases
with modal frequency (Figure 18), a variable lefr shifr appeers to be more
appropriate than a uniform leftr shift. By left-shifring high-frequency poorly known
modes, the control-system design procedure applies correspondingly reduced authority
to modec "perceived" as highly damped. Hence rhe variable left shifr can be roughly
rhought of as a device for achieving suitable authoriry rolloff. As will be seen,
however, the underlying robustification mechanism, nemely, wecak cubsystem interaction,
is far more subtle than the approach of classical rolloff techniques. It is also
interesting to note that the weak subsystem inreraction approach to robustness is
entirely distinct from classical robustness approaches which urilize high loop gain

to reduce sensitivity,

LARGE OPEN-LOOP SHIFT
e IN HIGH-FREQUENCY REGION
> LOW CLOSED-LOOP AUTHORITY

B
D e
SMALL OPEN-LOOP SHIFT
<X IN LOW-FREQUENCY REGION
< => HIGH CLOSED-LOOP AUTHORITY
Re

Figure 17. A Variable Left Shift Exploits Open-Loop Nondestebilizing Uncertainties




281
MODAL FREQUENCY
\/ 2%
COHERENT MQOODES INCOHERENT MODES
{Strong Corralation) (Waeak Correlation)
High-Authority Contral Low-Authority Control
Figure 18. Modal Uncertainty Generally Increases With Frequency
A variable left shift can readily be inrroduced into the robustified
optimal projecrion design equations by replacing A by
_ 1,2
A=A+ ZZA’.. (4.11)

where A,- denotes the structure of modal frequency uncertainty (Figure 19). Most
jnterestingly, such a modification of the dynamjics macrix arices naturally from a
multiplicative white noise model defined not in the usual Ito sense but rather in the

genge of Stratonovich. Thus, as in the a priori bounding approach, a stochastic
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Figure 19. For Modal Systems With Frequency Uncertainty
the Stratonovich Correction Corresponds to a Variable Leftr Shift
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model serves to sugpest a mechanism for robustification (Figure 20). Again it is
important to stress that the multiplicative white noise model js not interpreted
literally as having physical significance, bur rather can be thought of as a ugeful
design model which correctly captures the impact of uncertainty on the performance

functional via the state covariance.

ROBUSTNESS BOUNDS

S S s . e . —— —— — = —— — ——— —— —— — —

/ N
\ QUADRATIC LYAPUNOV FUNCTION MAJORANT LYAPUNOV FUNCTION )
\\-——— A SN e G T S — — ———_’/
I,,_._.___ ——————— e e
\ ITO NOISE MODEL STRATONOVICH NOISE MODEL '
\ /

STOCHASTIC UNCERTAINTY MODELS

Figure 20. Stochastic Models and Robustness Bounds Are Fundamenrally Related

In earlier work rhe Stratonovich dynamics model was justified by means of
the minimum information/maximum entropy approach ([A1-A15)). A cenrral result of the
maximum entropy approach ie that the high aurhority/low surhority trransition of a
vibration control system from well-known low-frequency modes to poorly known high-
frequency modes (Figure 18) is directly reflected in the structure of the srare

covariance matrix (Figure 21), A full-srare feedback design applied to a siaply

=0

h;—v—/\T—'
COHERENT __T INCOHERENT

(WELL-KNOWN MODES) (POORLY KNOWN MODES)
AN e

INFORMATION REGIMES

Figure 21. Frequency Uncertainties in the Stratonovich Model Lead to
Suppressed Cross Correlation in the Steady-State Covariance
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supported beam illustrates this point (Figure 22). By assuming that uncertainty in
modal frequencies increases linearly wirh frequency, the strucrure of the covariance
matrix leads directly to the control gaing jllustrated in Figure 23. Note that in
the high-frequency region the position gains are essentially zero and thus the
control law approaches positive~real energy dissipative rate feedback. This, of
course, is precisely the type of structural controller expected in rhe presence of
poor modeling information., Of course, any effectjve conrrol-design theory for active
vibration suppression in flexible structures should produce ecnergy dissipative

controlliers when structural modeling information is highly uncertain.

FORCE
ACTUATOR
* NONDIMENSIONAL EQUATIONS
OF MOTION (5, = )
n « "ENERGY™ STATE-WEIGHTING
{
* UNCERTAIRTIES IN DPEX.LOOP
FRLOUERCILS
[]
n .1
W= 3 4
Y7/ A x 3 lox @y
1 ' = STANDARD DEVIATION
£ 22043 OF Ktk MODE FREQUENCY
L
o SIMPLE UNCERTAINTY MODEL
o SIMPLY.SUPPORTED BLAM WITH FORCE ACTUATOR o

* FULL-STATE FECORACK

Figure 22, The Effects of Frequency Uncertainties Can Be Illustrated
for a One-Dimensional Beam With Idealized Full-State Feedback

To carry out robustified oprimal projecrion design in the presence of left-
shifted open-loop dynamics, it is only necessary to utilize the lefr~shifred dynamics
matrix (4,11) in place of the right-shifted matrix. All of the robustifjed oprimal
projection machinery, including gain expressions, can be utilized directly. It is
also importazt to stress that the leftr shift must be used in conjunction with terms

of the form AiQA'f. '

One explanation for rhe mechanism by which robustificarion is achieved is
illustrated in Figure 24, By left shifting the open-loop dynamice within the design
process, the compensator poles are similarly left-shifred. Thus the ccmpensaror
poles are effectively moved furrher into the lefr half plane away from the actual
plant poles. Since the interaction between compensator and plant poles is weakened,
the closed~loop cystem is correspondingly robustified with respect to uncertainties
in the plant pole locarions. A sensitivity analysis of this mechanism urilizing a

uniform left shift in the context of LQGC design is given in (15].
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As discussed above, the left-ghift approach exploite open-loop
nondestabilizing uncertainties and thus cannot operate through a priori bounding.
Thus the actual level of robustification achieved from the robustified optimal
projection equations for a given level of uncertainty uodeling cannot be predicted a
pricri, i.e., in advance of control design. Indeed, this situation is to be expected
when nondestabilizing uncertainties are exploited in a nonconservative design theory.
Thus a suitrable vobust analysis technique is required for noncongervactively
determining the robustification of the closed-loop system with respect to open-loop

nondestabilizing uncertainties.

A suitable robustness analysis technique, known as majorant Lyapunov
enalysis, has indeed been developed ([A42]). Essentially, this technique employs a
new type of Lyapunov function for assessing robustness due to weak subsystem
interaction. The underlying machinery consists of the block-norm matrix which is a
nonnegative matrix each of whose elements is the novm of & block of a suitably
partitioned matrix (Figure 25). A matrix which bounds the block-norm matrix in the
senge of nonnegative matrices, i.e., element by element, i® known #s 8 majorent.
Majorants were introduced in {16] and were applied to stability enalysis of
integration algorithms for ODE's in {17].

(Ostrowski, 1961; Dahlquist, 1983)

FM1 M1 ——-
M=| M2y M2 .
) N
\ ~
C Myl Mgl ---
W=l Mzl Himgll
) .
- |

NONNEGATIVE CONE ORDERING
M << il
Figure 25. The Matrix Majorant Is a Bound for the Matrix Block Norm,

i.e., the Nonnegative Matrix Each of Whose El=ments Is the Norm of the
Corresponding Block of a Given Matrix




286

To apply majorants to dynsmical systems, the model is written in the forw
ghown in Figure 26. The matrix A is block diagonal and consists of subsystem
dynamics. The subsystem interactions represented by the partitioned matrix G are
assumed to be uncertain. By suitable manipulation, uncertainties in the diagonal
blocks ot A can also be captured by G. By assuming thar the spectral norm (largest
gsingular value) of the blocks of G satisfy given bounds, the cuvariance block-norm
inequality is obtained (Figure 27). This inequality is interpreted in the sense of
nonnegative matrices, i.e., element-by-element, and * denotes the Hadamard (element-

by~element) product.

fz(A+Guew Q:=(A+G)a+QA+G)T+v
Ay 0 ——=] [0 Gy3---
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- ! - . i -

Known Subsystem Dynamics Unceriain Subsystem Inleractions

- 5 7
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Nolse intensity State Covariance

Figure 26. The Large-Scale System Model Involves Known Local Dynemics
and Uncertain Interactions
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Figure 27. The Block-Norm Matrix of the State Covariance Satigfies a
Lyapunov-Type Inequality Involving Nonnegative Matrices
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To achieve robustness, the covariance block-norm inequality is replaced by
the majorant Lyspunov equation (Figure 28). The solution of the majorant Lyapunov
equation provides a bound (majorant) for rhe block norm of the covariance thereby

guarsnteeing both robust etability &nd performance.

MAJORANT LYAPUNOV EQUATION
A*Q=50+Q85T+V
2(Gij) < Sij

4

Q=s=0Q

g

s Robust Stability
s Robust Performance

Figure 28. The Corresponding Nonnegatjve Matrix Equation Yields & Majorant
for the State Covariance and lience Robust Stability and Performance

It i¢ intereating to note that numerical solutjon of the majorant Lyapunov
equation requires no new techniques. Utjlizing properties of M matrrices, the
solution can be obtained monotonically by means of a straightforward iterative
technique (Figure 29).

~

MLE has a unique solution iff ((Jg, K=0, 1, ..., <| where:
/N
Cgo =0
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QK1 = 1M (G Qg + Q4T + V)
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/\ /\
Q= im Qg
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0=A B +P A +R
0=A) Px* Pk * Ry
Figure 29. By Exploiting the Properties of M-Matrices,

the Majorant Lyspunov Equation Can Be Solved Monotonically by Means of a
Simple Iterative Technique
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An jllustrative application of the majorant Lyapunov equation involves
lightly damped subsystems (Figure 30). As shown in [A42] (and expected intuitively),
robustnegs with respect to uncertain subsystem interaction is proportional to the
frequency separation between the subsystems. The ability to capture this
robustification mechaniem ia a unique feature of the majorant Lyspunov function not
avsilable from quadratic (i.e., scalar) Lyspunov functions or vector Lyapunov
functions ([18,19}).

Majorant Lyapunov Equation Bound~ v ](2\')2 + (w1-w2)21

Figure 30, Robustness Bounds for Uncertain Coupling in Modal Systems
Are Proportional to the Frequency Separation Between Subsystems

The next step in the majorant development involves a& hierarchy of finer and
finer robustness bounds which account for higher order subsystem interactions, e.g.,
the interaction between the ith and jth subsystems via the kth subsystem. The second
memgber of the hierarchy (Figure 31) provides robustness guarantees with respect to
frequency uncertainties. The interesting aspect of this.robuatness test ie the fact
that the performance bound is characterized precisely by a Stratonovich model. Hence
the Stratonovich model can be viewed as an spproximation to a robustness bound, while
exploiting the Stratonovich/masjorant relationship leads to a natural
synthesis/analysis scheme (Figure 32) which noncongervatively exploits open-loop
nondestabilizing uncertainties.




SYNTHESIS

UTILIZE STRATONOVICH MODEL
TO EXPLOIT NONDESTABILIZING
OPEN-LOOP UNCERTAINTIES

UTILIZE MAJORANT LYAPUNOV
EQUATION TO CHECK ROBUSTNESS WITH
RESPECT TO CLOSED-LOOP NONDESTABILIZING
SUBSYSTEM INTERACTION

ANALYSIS

Stratonovich synthesis = approximation to majorant analysis

Figure 31. The Stratonovich Synthesis Model Provides a First Approximation to the
Majorant Analysis Bounds

Second member of the hierarchy:

A AN A ~
S0 Q + Q] = <> + <Q>LT + 1

r ~
J - r[QR]) < 2 (ir PIU<Q>)KK
K=1

0=A0 + AT +1[G) + V

0=ATP +Pa +}{1[P]+R
where: A A~
<> 2 oft-diagonal part of (9
}[.] = Stratonovich model operator

s Tighter bound—incorporates more information on A and G
s Predicts stability when (A + AT) stable, G = -GT
» “Nominal” performance, tr [QR], given by Stratonovich model

Pigure 32. The Refined Msjorant Bound Incorporates s Stratonovich Covarisnce Model
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5. Numerical Algorirhms and Examples

Practical design of controllers js only possible when efficient, reliable
algorithms are available. Indeed, the oprimal projecrion equations are readily
solvable and have been applied to a wide variety of examples. Numerical results
appear in [A3-A6,AB,A11,A12,A14-A16,A18,A19,A21-A24,A26~-A28,A30-A33,A39,442, Ab4,A46] .

Two distinctly different algorithme have been developed thus far, namely, an

iterative merhod and a homotopy slgorittm.

The iterative method, developed in [Al4,A16,A44) and further studied in
[20,21), is outlined in Figure 33. The nice feature of this spproach is that only
a stendard LQG scftware package is required for iis implementation. The basic
motivation for the method is the obgervation that the main source of coupling is
via the terme involving 7,. The coupling is absent, of course, when T is the
identity, i.e.,, LQG. Note also that the terms involving T) are small when R2 and
V2 are large. i.e., wvhen control cost i8 high and the measurement noise ig
significant, This case, which yields low-authority controllers, is approximarely
characterized by decoupled control-design and controller-reduction operations.
Thus it is not surprising that LQG reduction techniques are most successful when

controller authority is low.

Since the 7, terms occasion the greatest difficulty, it appears
advantageous to bring them into plsy gradually. This can be accomplished by fixing
T after each iteration to yield updated values of Q, P, Q and P. Furthernore, T is

introduced gradually by means of a to reduce its rank,

The crucjal step of the algorithm concerns the construction of the
projection T from the pseudogramians 6 and ;. Specifically, T can be characterized
(see [A22]) as the sum of eigenprojections of a;. where each choice of
eigenprojections may correspond to a local extremal. However, the necessary
conditions do not epecify which eigenprojections are to be selected for obtaining a
particular local solution. Nevertheless, there do exist useful methods for
constructing T. For example, component-cost decomposition methods ([22]) when
applied within the optimal projection framework often permit efficient identification

of the global optimum.

Although the iterative method is convenient to use because it utilizes
readily available software, it is suboptimal in the eense that it does not fully
exploit the structure of the equations. Specifically, while the iterative method
addresses a system of four nxn matrix equations, careful analysis reveals that
because of the rank deficiency of the projection the problem can be recast as four

n xn equations. Hence, when n, is much smaller than n, which is clearly the most
c
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desirable case for practical implementation, there exists considerable opportunity
for increased computational efficiency. Furthermore, and most satisfying, the
computatijonal complexity decreases with n. as is intuitively expected below that

required by LQG design. Hence the oprimal projection approach has computatjonal

complexity less then LQG reduction methods for which LQG is but the first step.

S. Richter ([23,A46])) has developed a homotopy algorithm which fully
exploits this crucial structure. MNumerical experiments thus far have shown that
congiderable computational savingé can be achieved over the iterative method.
Furthermore, by applying topological degree theory to investigare the branches and
character of the local extremals, it can be shown that the maximum number of possible

extremals is

ain(n,m,2)
n
c
if n, ¢ min(n,m.4) or 1 otherwise. Hence in most practical cases the equations

support a relatively small number of solutions.

Both the iterative method and the homotopy algorithm have been applied to &
design problem involving an 8th-order flexible structure originally due to D, Enns
and considered in [1). Specifically, s variety of LQG reduction methods are compared

in [1) for e range of controller authorities. These methods include:

1. Enng: This method is & frequency-weighted, balanced realjzarion technique

appliicable to either model or contvoller reduction,

2. Gliover: This method utilizes the theory of Hankel norm optimal

approximation for controller reduction,

3. Davis and Skelton: This is a modification of compensator reduction via

balancing which addresses the case of unstable controllers.

4, Yousuff and Skelton: This is a further modification of balancing for

handling stable or unstable controllers.

5. Liu and Anderson: 1In place of using a balanced approximation of the
compensator transfer functicr directly, this method approximates the

coumponent parts of & fractional representatijon of the compensator.
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All of the above methods proceed by first obtaining the full-order LQG
compensator degign for a high-order state-space model and then reducing the dimension
of the resulting LQG compensgator.

Figure 34 summarizes the resulrs reported in [1] for the above LQG
reduction methods along with results obtained uging the iterative method for solving
the optimal projection equations. Here 1, igs a scale factor for the plant
disturbance noise affecting controller authority. Clearly, LQG reduction methods
experience increasing difficulry as authority increases, i.e., as the fl terns become
increasingly more important in coupling the control and reducrion operstions. For
the low authority cases, the optimal projection calculations, which were performed on
a Harris H800 minicomputer, appeared to incur roughly the same computational burden
as the LQG reduction methods. Alrhough rhe optimal projection computarional burden
increases vith authority, comparison with rthe LQG reduction methods is not meaningful
because of the difficulty experienced by these methods in achieving closed-loop
stability. See [A44] for further detsils snd for comparisons invalving transient
response. '

The homotopy slgoritha was also spplied to the exsuple considered in ([1].
One of the main goals of the development effort was to extend the range of
disturbance intensity or, equivslently, observer bandwidth, cut beyond 9 = 2000. To
this end, second-ovder (nc = 2) controllers vere obrained with relatively little
computation for 9, = 10,000, 100,000 and 1,000,000, In addition, the performsncs of
each reduced-order controller was within 25% of LQG. These cases can surely be
expected to present a nontrivial challenge to both the LQG reduction methods and the

jterstive optimal projectrion method.

Numerical solution of the robustified optimal projection equations has been
carried out for severasl exsmples. For illusrrative purposes a 2x2 exsuple was
consjdered in [A26] and the results illustrsted in Figure 35 indicate performance/
robustness tradeoffs possible. The varieble left-shift technique wag applied in
[A19] to the NASA SCOLE problem with frequency uncertainties. The robustness of LQG
and two robustified designs is shown in Figure 36, The plots jllustrate the
degradation in performance due to simultaneous perturbation of all modal frequencies.
Note that LQG is rendered unstable by +5% frequency perturbation while a high~
suthority robustified design improves this region ro +8%. The low-authority design

increases this region significantly while sacrificing 62 nominal performance.
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6. Additional Extengions

The robustified optimal projection design machinery has been further
extended to encompass a larger number of design cases arising in practical

application. Here we merely list the extensions:
1. Discrete~time and sempled-data controllers ([A28,A30,A34,A35)).
2. Decentralized controllers ([A39]).
3. Nonstrictly proper controllers ([A37]).

4, Distributed parameter systems ([A25}).

7. Concluding Remarks

The machinery provided by OPUS for designing active controllers for
flexible structures has been reviewed. The basic machinery is a system of coupled
Riccati and Lyspunov equations which directly generalize the classical LQG result to
include both a constraint on controller order and a model of paramerer uncertainty.
The overall approach thus encoumpasses all major design tradeoffs arising in
vibration-guppression applications. Substantial numerical experience has been gained
through an jterative method requiring only an LQG software package and, more
recently, by meang of a highly efficjent homotopy algorithm developed by S. Richter.
The overall approach opens the door for effective design of juplementable controllers

for large precision space structures.

Acknowledgment. We wish to thank Ms. Jill M. Straehla for the excellent
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The Optimal Projection Equations for Model
Reduction and the Relationships Among the

Methods of Wilson,

Skelton, and Moore
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Abstract—First-order necessary coaditions for quadratically optimal
reduced-order modeling of linear time-invariant systems are derived in the
form.of a pair of modified Lyspunov equations coupled by an oblique
projection which determines the optimal reduced-order model. This form
of the necessary coaditions considerably simplifies previous resuits of
Wilson [1] and clearly demonstrates the quadratic extremality and
nonoptimality of the balancing method of Moore [2]. The possible
existence of multiple solutions of the optimsl projection equations is
demonstrated and a relaxation-type algorithm is proposed for computing
these locs) extrema. A component-cost analysis of the model-error
criterion similar to the approach of Skelton (3] is utilized at each iteration
(o direct the algorithm to the global minimum.

1. INTRODUCTION

HE problem of approximating a high-order linear dynamical

system with a relatively simpler system, i.e., the
model-reduction problem, has received considerable attention in
recent years. Among the myriad papers devoted to this problem
are the notable contributions of Wilson [1]. Moore [2], and
Skelton [3] with which the present paper is concerned. In his 1970
paper, Wilson proposed an optimality-based approach to model
reduction which involves minimizing the steady-state, quadrati-
cally weighted' output error when the original system and
reduced-order model are subjected to white-noise inputs. For the
resulting parameter-optimization probiem, he obtained first-order

Manuscript received October 2, 1984 revised February 1, 1985. This
paper is based on a prior submission of March 14, 1984. Paper recommended
by Past Associate Editor, B. R. Barmish. This work was supported in part by
the Air Force at Lincoln Laboratory/M.L.T., Lexington, MA.

The authors are with Harris Corporation, Government Acrospace Systems
Division, Controls Analysis and Synthesis Group, Melbourne, FL 32901.

' The quadratic error critcrion has been chosen for consideration in the
present paper because of its relation to the standard engineering practice of
stating specifications in terms of rms deviation.

necessary conditions which have the form of an aggregation (as,
¢.g., [4]) and which involve the solution of two Lyapunov
equations each of order n + n,,, where n and n,, are the orders of
the original and reduced-order models, respectively [5]. [6].

Some time later, Moore proposed a quite different approach to
model reduction based upon system-theoretic arguments as
opposed to optimality criteria. Using the eigenvalues of the
product of the controllability and observability gramians (which
satisfy 7 X n Lyapunov equations), his method identifies
subsystems which contribute little to the impulse response of the
overal! system. Such ‘‘weak’" subsystems are thus eliminated to
obtain a reduced-order model. This technique, known as balanc-
ing, has been vigorously developed in the recent literature [7}-
{11]. Since this approach is completely independent of optimality
considerations, there is, of course. no expectation that such
reduced-order models are in any sense optimal.

A third approach to model reduction, proposed by Skelton [3],
[12], also utilizes a quadratic optimality criterion as in {1].
However, rather than proceeding from necessary conditions as
does Wilson, Skelton determines for a given basis the contribution
(cost) of each state in a decomposition of the error criterion and
truncates those with the least value. Although this approach is
guided by optimality considerations, no rigorous guarantee of
optimality is possible because of dependence on the choice of state
space basis.

The present paper has five main objectives, the first of which is
to show how the complex optimality conditions of Wilson can be
transformed without loss of generality into much simpler and
more tractable forms. The transformation is facilitated by
exploiting the presence of an oblique (i.e., nonorthogonal)
projection which was not recognized in [1}* and which arises as a
direct consequence of optimality. The resulting **optimal projec-
tion equations’’ constitute a coupled system of two n X n

? The projection was, however, pointed out in {28, p. 29].

0018-9286/85/1200-1201801.00 © 1985 IEEE
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modified Lyapunov equations [see (2.13), (2.14) or .20,
(2.22)] whose solutions are given by a pair of rank-n,, controlla-
bility and observability pseudogramians. The highly structured
form of these equations gives crucia! insight into the set of local
extrema satisfying the first-order necessary conditions.

The second objective of the paper is to show how the optimal
projection equations provide a rigorous extremality context for
Moore’s balancing method and to clearly demonstrate its qua-
dratic nonoptimality. Although for some problems the ‘‘weak
subsystem’* hypothesis leads to a nearly optimal reduced-order
model, we construct examples for which the reduced-order model
obtained from the balancing method is much worse with respect to
the least-squares criterion than the quadratically optimal reduced-
order model. In general, all that can be said is that the presence of
a weak subsystem indicates that the reduced-order model obtained
by truncation in the balanced basis may be in the proximity of an
extremal of the quadratically optimal model-reduction problem;
however, this extremal may very well be a global maximum. It
should be noted that in a recent paper [13] Kabamba has used
bounds on the model error to demonstrate the quadratic nonopti-
mality of the balancing method.

The third objective of the paper is to demonstrate via an
example the mechanism responsible for the existence of multiple
extrema of the optimal model-reduction problem. By characteriz-
ing the optimal projection as a sum of rank-1 eigenprojections of
the product of the rank-deficient pseudogramians, it is immedi-
ately clear that the first-order necessary conditions of the problem
are ambiguous in the sense that they fail to specify which n,
eigenprojections comprise the optimal projection corresponding to
a solution (i.e., global minimum) of the optimal model-reduction
problem. Specifically, since the pseudogramians can be rank
deficient in ( :,..) = n!/ny!(n — n,)! ways, there may be precisely
this many extremal projections corresponding to an identical
number of local extrema.

The fourth objective of the paper is to propose a numerical
algorithm for solving the optimal projection equations by exploit-
ing their structure and taking advantage of the available insights.
By expressing the modified Lyapunov equations in the form of
“‘standard”® Lyapunov equations, an iterative relaxation-type
algorithm is developed. The crucial aspect of the proposed
algorithm involves extracting an oblique projection at each step
from the product of the solutions of the Lyapunov equations.
Since ( ,':M) rank-n,, projections can be extracted from the product
of two n X n positive-definite matrices. it is quickly evident that
the criterion by which the n, eigenprojections are chosen
determines which of the numerous local extrema will be reached.
I€. for example, the projection is chosen in accordance with the 7,
largest eigenvalues of the product of the solutions of the Lyapunov
equations, then it should not be surprising in view of the previous
discussion that a global maximum may very well be reached. In
this case, the first iteration of this algorithm involves Lyapunov
equations whose solutions are the controliability and observability
gramians and the eigenvalues in question are precisely the squares
of the second-order modes [2, p. 24). Thus, the first iteration
coincides with the (nonoptimal) balancing approach of {2].

Since the optimal projection equations are a consequence of
Lifferential (local) properties, it should not be expected that they
alone would possess the inherent ability to identify the global
minimum. Moreover, because of the number of local extrema,
second-order necessary conditions appear to be useless. Instead,
we investigate an approach which chooses the eigenprojections
according to a component-cost analysis of the model-error
criterion. This technique can lead to a global minimum by
effectively eliminating the local extrema which have considerably
greater cost than the global minimum. This approach is philosoph-
ically iduntical to the component cost analysis of Skelton [3], [12]).
Essentialiy, then, component cost analysis is utilized at each
iteration to direct the algorithm to the global minimum. Although
our application of this technique is admittedly heuristic, it should
be noted that it is essentially proposed as a device for efficiently

**sorting out’’ the local extrema which satisfy the otherwise
mathematically rigorous necessary conditions. Hence, we propose
component cost analysis as a crucial step in bridging the gap
between local extremality and global optimality.

It should be pointed out that neither the numerical algorithm
proposed in this paper nor the iterative algorithm developed in [4]
and [5] has been proven to be convergent. The principal
contribution of the present paper, however, is not a particular
proposed algorithm but rather the revelations concerning the
structure of the first-order necessary conditions. The pro-
posed numerical algorithm should be considered but a prelude o a
full investigation into numerical algorithms for the optimal
projection equations. It should also be noted that the presence of
the optimal projection was not exploited in developing the
iterative algorithms in [4) and [5) (in fact, jt did not even appear in
[1]) and hence crucial insight into local extrema was lacking.

The fifth and last objective of the paper is to point out the
connection between the optimal projection equations for model
reduction obtained herein and the first-order necessary conditions
obtained recently for two closely related problems, namely,
reduced-order state estimation and fixed-order dynamic compen-
sation.

The plan of the paper is as follows. Section II begins with
general notation and definitions followed by the model-reduction
problem statement and the main theorem which presents the
optimal projection equations for model reduction. A series of
remarks considers various aspects of the main theorem and sets
the stage for discussing connections with [1] and [2). Section HI
contains a detailed discussion of the sense in which the optimal
projection equations simplify the necessary conditions given in
[1]. and Section IV shows how the approach of {2] is approxi-
mately extremal. Section V presents a simple example which
clearly displays the possible existence of multiple extrema
satisfying the optimal projection equations. This example shows
that the balancing method of [2] may lead to a nonoptimal
reduced-order model and suggests a heuristic procedure for
selecting the eigenprojections comprising the projection corres-
ponding to the global minimum, i.e., the optimal projection. In
Section VI, a numerical algorithm for solving the optimal
projection equations is proposed and applied to an illustrative
example considered previously in [1] and {2] as well as to some
interesting examples considered recently by Kabamba in [13].
Related results on reduced-order dynamic compensation and state
estimation are briefly reviewed in Section VII and suggestions for
further research are given in Section VIII. The proof of the main
theorem appears in the Appendix.

I1. PROBLEM STATEMENT AND MAIN RESULT

The following notation and definitions will be used throughout
the paper:

1 r x ridentity matrix

z7 transpose of vector or matrix Z

zZ7 (ZNH'or(Z-HT

o(Z) rank of matrix Z

tr Z trace of square matrix Z

Iz [tr 2Z7)'?

i (i, j)-element of matrix Z

diag (a, ***, ) r x r diagonal matrix with listed
diagonal elements

E, matrix with unity in the (i, i)
position and zeros elsewhere

£ expected value

I real numbers, 7 X § real matrices

stable matrix matrix with eigenvalues in open

left half plane

nonnegative-definite symmetric matrix with
matrix nonnegative eigenvalues
positive-definite symmetric matrix with positive
matrix eigenvalues
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semisimple matrix matrix similar to a diagonal matrix

(14, p. 10]

matrix similar to a nonnegative-

definite matrix

matrix similar to a positive-

nonnegative
semisimple matrix
positive-semisimple

matrix definite matrix
positive-diagonal diagonal matrix with positive
matrix diagonal elements
nmt n, positive integers, 1 s n, < n

Xy Uy Vs Xms Y n,m, l, oy f-dimensional vectors

A B C nxnnxméx nmatrices

Any By C Py X Ry My X M, E X Ry
matrices

R,V ¢ x &, m X m positive-definite
matrices

We consider the following problem.
Optimal Model-Reduction Problem: Given the controllable
and observable system

X=Ax+Bu, 2.n
y=Cx 2.2)
find a reduced-order model
Xm=AmXm+ Bru, 2.3)
IYm=CnXn 2.9

which minimizes the quadratic model-reduction criterion?

J(Am, Bm, Cp) é}l‘a E[(y“ym)rR(y-ym)].

where the input u(f) is white noise with positive-definite intensity
V. To guarantee that J is finite, it is assumed that A is stable and
we restrict our attention to the set of admissible reduced-order
models

G 2 {(Am, Bm, C) ¢ A, is stable}.

Since the value of J is independent of the internal realization of the
transfer function corresponding to (2.3) and (2.4), we further
restrict our attention to the set

Q. 2 {(An, B, Cr)EQR:
- (Am, Bn) is controllable and (A4,, C,) is observable}.

The following lemma is needed for the statement of the main
result.

Lemma 2.1: Suppose Q, P € R"*" are nonnegative definite.
Then QP is nonnegative semisimple. Furthermore, if p(QP) =
nn, then there exist G, I' € ®"m *" and positive-semisimple M €
R *"m such that

0P=G™MT, Q2.5
rGT=1, . 2.6)

Proof: By (14, Theorem 6.2.5, p. 123], there exists n X n
invertible & such that the nonnegative-definite matrices Dg &
$0é7 and Dp & $ TP~ ! are both diagonal. Hence, DDy is
nonnegative definite and QP = &-'DyDpd is nonnegative
semisimple. Next introduce n X n orthogonal U to effect a
rearrangement of basis if necessary so that

OF=# [‘3 g] &,

7 will occasionally be referred to as the *‘model-reduction error'' or.
simply, as the ‘‘cost.”
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where & $U and n,, X n,, A is positive diagonal. Hence, for all
Nm X N, invertible S,

Qﬁ=¢[g](s-'z\sns~' 018~

and thus, (2.5) and (2.6) hold with G = [ST 0)&T, M = S-'AS
and T = [S~' 0]$-!'. L]
For convenience in stating the main theorem, we shall refer to
G, T' € R"= " and positive-semisimple M € ["=*"m satisfying
(2.5) and (2.6) as a (G, M, T)-factorization of QP. Also, define
the positive-definite controllability and observability gramians

Wes | ewBvBTea ar,
0

W, & S: eATCTRCe dr,

which satisfy the dual Lyapunov equations
O0=AW.+W.AT+BVBT, 2.7
0=A"W,+W,A+CTRC. (2.8)
Main Theorem: Suppose (A, Bw, C.) € @, solves the
optimal model-reduction problem. Then there exist nonnegative-

definite matrices O, # € R**" such that, for some (G, M, T)-
factorization of QP, A, B, and C,, are given by

An=TAGT, 2.9)

B,=T8, (2.10)

C.=CG7, (2-11)

and such that, with 7 2 G'T,, the following conditions are sati. fied:
p(Q)=p(P)=p(QP) =, 2.12)

0=1{A0+ (AT +BVBT], Q.12
0={A7h+PA+CTRC)r. 2.1

Several comments are in order. First, note that the main
theorem consists of necessary conditions in the form of two
modified Lyapunov equations (2.13) and (2.14) plus rank condi-
tions (2.12) which must possess nonnegative-definite solutions 0
P when an optimal reduced-order model exists. We shall call O
and P the controllability and observability pseudogramians,
respectively, since they are analogous to W, and W, and yet have
rank deficiency. The modified Lyapunov equations are coupled by
the n X n matrix 7 which is a projection (idempotent matrix) since

72=GTGT=G"I, I'=1.

Note that, in general, 7 is an obligue projection and not
necessarily an orthogonal projection since it may not be symmet-
ric. We shall refer to a projection r corresponding to a solution
(i.c., global minimum) of the optimal model-reduction problem as
an *‘optimal projection.’’ It should be stressed that the form of the
optimal reduced-order model (2.7)~(2.9) is a direct consequence
of optimality and not the result of an a priori assumption on the
structure of the reduced-order model.

Since the optimal projection equations are first-order necessary
conditions for optimality, they may possess multiple solutions
corresponding to various local extrema such as local maxima,
local minima, saddle points, etc. The following definition will
prove useful.

Definition 2.1: Nonnegative-definite O, P € H"*" are
extremal if (2.12)-(2.14) are satisfied. (4,,, Bn, Cn) € Q. is
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extremal if there exist extremal 0, P such that (A, B, C,) is
given by (2.9)-(2.11) for some (G, M, T')-factorization of QF.
The corresponding projection 7 is an extremal projection.

Proposition 2.1: Suppose (A, Bp, Cn) is extremal. Then the
model-reduction error is given by ¢

J(Am: Bm, Cp)=2r [(QF- W WA 2.19)

Proof: The proof is given at the end of Appendix A. W
Remark 2.1: Noting the identities

—2r [W.W,A]l=tr [CTRCW_ ]=tr (BVBTW,], (2.16)

which follow from (2.7) and (2.8), (2.15) can be written for
extremal (A,,, B, Cn) as

J(An, Bmy Cm)=2tr [OPA)+1tr [CTRCW,]
=2r (QPAl+tr (BVBTW,]. (2.17)

For convenience in the following discussion, let @, B, G, M,
I, and r correspond to some extremal (A,, B,, Cn,). Now
observe that if x,, is replaced by Sx,, where S is an arbitrary
nonsingular matrix, then an ‘*equivalent’’ reduced-order model is
obtained with (A,, B,, C,) replaced by (SA,S-', SB,,
CnS V). Since J(Ap, By, Cm) = J(SA,S "', SB,,, CuS~"), One
would expect the main theorem to apply also to (S4,,S-?, SB,,,
CnS Y. Indeed, the following result shows that this transforma-
tion corresponds to the alternative factorizaton QP =
(S-7G)"(SMS ~')ST') and, moreover, that all (G, M, I')-
factorizations of QP are related by an invertible transformation.

Proposition 2.2: If S € R"*"m is invertible, then G =
$-7G,I' = ST"and M = SMS -} satisfy

QF=G™MT, .5)
réT=1,,. 2.6)’

Conversely, if G, I' € R"m*” and invertible M € R"m*"m
satisfy (2.5)" and (2.6)’, then there exists invertible § € Rm *m
suchthat G = S-7G,I' = ST and M = SMS\.

Proof: The first part is immediate. The second part follows
by taking S & M- 'T'G7M, noting S-' = MTGTM -} and using
the identities PG"MT'G7 = M and MTGT = TG™M. 2

The next result shows that there exists a similarity transforma-
tion which simultaneously diagonalizes OF and 7.
Proposition 2.3: There exists invertible & € R"*" such that

Q=¢~l['})0 g]qﬂ, ﬁ=¢r[‘}," g]¢, @.18)

QP:«H[‘; g]eb, f=¢-'["3~ g]d». (2.19a, b)

where Ag, Ap € R"m*"m are positive diagonal, A & AgAp and
the diagonal elements of A are the eigenvalues of M. Conse-
quently,

0=10, P="Fr. (2.20)

Proof: By {14, Theorem 6.2.5, p. 123], and by (2.12), there
exists n X n invertible & such that (2.18) holds and thus (2.19a)
also holds. Define

G=11,, 01#-T, M=A and F'=[/,, 0]%
so that (2.5)’ and (2.6)' are satisfied. By the second part of
Proposition 2.2 there exists invertible S € {"m *"m such that G =

4 The expressions (2.15)-(2.17) and (2.23)-(2.24) will be used in Sections
V and VI.
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STG, M = S-'MSandT = S-'I'. Now (2.19b) follows from

il ©
r=o7r=c7r=¢»'[° . .

It is useful to present an alternative form of the optimal model-
reduction equations (2.13) and (2.14). For convenience, define
the notation '

7, & I,-71.

Proposition 2.4: Equations (2.13) and (2.14) are equivalent,
respectively, to

0=A0+0AT+BVB"-1, BVBTsT, 2.21)

0=A"P+PA4+C'RC-rTC'RCr,. 2.22)

Proof: By (2.20), (2.21) = (2.13) + (2.13)" + (2.13)7 and

(2.13) =7(2.21). Similarly, (2.14) and (2.22) are equivalent. B
Remark 2.2: Noting the identities

-2 tr [0PA])=t [CTRCQ}=tr (BVBTP], (2.23)

which follow from (2.20)-(2.22), (2.17) can be written for
extremal (A,,, B,, C») as

J(Am, Bn, Ca)=tr [CTRC(W .~ Q))=tr [BVBT(W,~F)].
(2.24)
To facilitate the discussion in the following sections, we

consider the change of basis £ & &x, where ® is given by
Proposition 2.3. Writing (2.1) and (2.2) as

£=A%+ Bu, (2.25)
y=Cg, (2.26)
where
AL dad-t, BedB, C&Co,
(2.9)-(2.11) become
An=TAGT, .27
B,=18, 2.28)
Ca=CGT, (2.29)
where
fare-!, G &GeT
satisfy
GM= ["(';- g] . PGT=1, . (2.30)
Note that (2.30) implies
P=(s 0. G=(S"T 0}, (2.31)

for some n,, X n,, invertible S. Partitioning

£m : | Am Anm
ele] Al &)
B,
§=[52], =16, ¢

where £,, € R"mand A,,, B, and C,, are n,, x n,, N, X mand

. 4..--“‘-‘"-«“-...

-.. A v brurvus-u R W | S
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€ X n,, respectively, (2.27)-(2.29) and (2.31) yield
Am=SApS~', Bn=5B,, Cn=0C,5-\.

This shows that the optimal reduced-order model (modulo a state
transformation) can be obtained by truncating the last n — 2,
states of the original system when it is expressed in the basis with
respect to which O and P have the diagonal forms

r2]=[+]

Since the optimal projection 7 has the simple form

[ 3]

in this basis, we shall refer to (2.25) and (2.26) as an optimal
projection realization of (2.1) and (2.2). Note that when (2.21)
and (2.22) are expanded in an optimal projection basis (i.e., a
basis corresponding to an optimal projection realization) they
assume the form

0=AnAp+AgA L+ B, VB, (2.32)
0=AzmAy+ B, VBE, (2.33)
0=ATAp+ApAn+CIRC,,, 2.39)
0=ApA,; + CTRC,. (2.35)

If & in Proposition 2.23 is replaced by

(ApAp)* 0
[ 0 1._,.,,]"

which corresponds to a change of basis for the reduced-order
model obtained by truncation, then and Ap are both replaced
by (AgAs)'”? and hence this can be called a balanced optimal
projection basis, utilizing the terminology of [2]. Thus, in a
balanced optimal projection realization, As and Ap appearing in
(2.32)-(2.35) are equal.

The nexi result provides an interesting closed-form characteri-
zation of an extremal projection in terms of the Drazin generalized
inverse of QP. Since ( P}z = GTM, and hence p(QP)? =
o(OP), the “‘index’’ of OP (see [15, p. 121]) is 1. In this case,
the Drazin inverse is traditionally called the group inverse and is
denoted by (OF)” [15, p. 124). Since, as is easily verified, (0P)*
= GTM-IT, (2.6) leads to the following result.

Proposition 2.5: An extremal projection 7 is given by

r=0P(0F)". (2.36)

An alternative representation for an extremal projection will
prove useful for developing a numerical algorithm for solving
(2.21) and (2.22). If Q, P € R’ are nonnegative definite then
by Lemma 2.1 QP is nonnegative semisimple and thus there exists
invertible ¥ € [R"*" such that

QP=¥-'ay,

where @ = diag (w;, '+, w,) and w; = O are the eigenvalues of
QP. Now define the ith eigenprojection {16, p. 41]

TIQP] & ¥ 'E¥,
which is a rank-1 oblique projection. Note that QP has the
decomposition

QP=3 IIQP).

iw]
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Proposition 2.6: An extremal projection 7 is given by
r=3 I0A), @37

i=l

where the ith eigenprojection IT,{OP[ corresponds to the ith
nonzero eigenvalue \; of QP.

III. RELATIONSHIP TO WILSON's FORM OF THE NECESSARY
CONDITIONS

The optimal model-reduction problem considered in the pre-
vious section is identical to the problem considered by Wilson in
[1) with the minor exception thathe sets R = /,. In[1} Gand T
are denoted by 87 and 6,, (2.6) appears as (15), and (2.9)-(2.11)
are given by (14a, b). Note that in [1], 8, and 8, depend upon the
solutions of a pair of (n + n.) X (n + n,) Lyapunov equations
[see (7), (9) of (1] or (A.2), (A.3) of the present paper] whose
coefficients and nonhomogeneous terms depend in turn on A,,,
B,.,3 and C,{see (A.10)~(A.15)). The advantage of the n X »n
optimal projection equations (2.21) and (2.22) over the form of
the necessary conditions given in [1] [see (A.10)-(A.15)] is that
the optimal projection equations are independent of A,,, B,,, and
Cn. Hence, this permits the development of numerical algorithms
which avoid the need to choose starting values for A,,, B, and
Ca. To see this, note that although the unknowns A,,, B, and
Cn appear explicity in (A.10)-(A.15), all data in the optimal
projection equations (2.13) and (2.14) are known except for the
solutions @ and B. Moreover, the optimal projection 7, which was
not recognized in (1], can be seen to play a fundamental role by
coupling the modified Lyagtrx‘nov equations (2.21) and (2.22) and
determining (since r = G'T') A,,, B,, and C,, in (2.7)-2.9).

IV. RELATIONSHIP TO MOORE's BALANCING METHOD

In contrast to Wilson’s method for model reduction which is
based on optimality principles, the approach due to Moore (2]
relies on system-theoretic ideas. The main thrust of this approach
*‘is to eliminate any weak subsystem which contributes little to the
impulse response matrix’’ (2, p. 26]. The concept of a *‘weak
subsystem’’ is defined by means of a dominance relation [2, p. 28]
involving similarity invariants called second-order modes. Moore
evaluates reduced-order models obtained in this way by comput-
ing the relative error in the impulse response given for MIMO
systems by [2, p. 29]

L] o 172
An, B Co) & | [TNHAON arf [ 1B N2 0 |7

where H,(f) & H(t) — Hu(t), H(t) £ R'2Ce*BVV? and H, (1)
& R'2C,e*m' B, V2. To discuss this approach in the context of the
optimal model-reduction problem, we assume that V = I, and R =
I,

Proposition 4.1: Suppose (A, By, Cu) € Q. Then

(s By Ca)=[=3 J(Ans By Cadtt (W WG AN

=(J(Am, Bm, Cn)/tr (CTRCW,))'/?
=[{J(Am, Bm, Cw)/tr (BYBTW,)])12, @.1)

Proof: The result follows from (A.1), (A.8), and (A.9)
which hold without regard to either optimality or extremality. 8l
Note that Proposition 4.1 shows that the relative error in the
impuise response is minimized precisely when J(A,,, B,, Cn) is
minimized. Actually, this result is to be expected since, as shown
in (1}, J can be obtained alternatively by taking u(f) to be an
impulse at ¢t = 0.
To draw interesting comparisons with the results of {2], choose
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n X n invertible ¥ such that ¥ W. ¥ 7 and ¥ -7 W, ¥ ~! are both
diagonal and hence

W . W,=¥-132¥, 4.2)

where £ & diag (o), - * -, 0,) and the second-order modes o; (i.c.,
the positive square roots of the cigenvalues of W, W,) satisfy 0, 2 0,
2 *** Z o0, > 0. This transformation corresponds to replacing
(2.1). 2.2) by

2=Ax+ Bu, 4.3)
y=Cr, 4.9)

where
ZL¥x, ALYAY"', BLV¥B, CoC¥'\. (45

The transformed system (4.3), (4.4), called a principal axis
realization [17], can further be chosen so that

YW=V TW, ¥ '=3, (4.6)

i.e., the balanced realization. Using (4.5), (2.7) and (2.8) become
0=A+ZA4AT+BVBT, @.7
0=ATz+32A+C'RC. (4.8)

The model-reduction procedure suggested in [2] involves
partitioning

Xm - Am Am
[x] -l %]
B, _
B--[Bz], C=[C. C3),

where X, € #t"m and A,, B,, and C, have corresponding
dimension, and extracting the reduced-order model (4,,, B,,
C..). Hence, the reduced-order model (A,,, B,,, C.) is extracted
from (4.3), (4.4) in essentially the same way the optimal reduced-
order model (A4,,, Bn, Cn) is extracted from (2.25), (2.26). To
see how the optimal-projection realization compares to a princi-
pal-axis realization, first note that (2.13) and (2.14) are satisfied
by 0 = W.and P = W, when the rank conditions (2.10) are
ignored. Indeed, since W, and W, are positive definite, the rank
conditions (2.12) do not hold. If, however, the system (2.1), (2.2)
is expressed in the balanced coordinate system (4.3), (4.4) (so that
W, = W, = ), then the assumption o,, » 0, . implies that
oW.), o(W,) and p(W_ .W,) are “approximateﬁ'/" equal to 7,
and thus, in this sense, condition (2.10) is satisfied. This
observation leads to the suggestion that when 0, » 0,,.1, W,
and W, are approximations to solutions Q and P of the optimal
projection equations and the reduced-order model (A,,, 8., C.)
of Moore is an approximation to some extremal (4,,, B,, Cn).
There is no guarantee, of course, that any particular extremum
corresponds to the global minimum, or even to a local minimum.

V. EXISTENCE OF MULTIPLE EXTREMA AND COMPONENT-COST
RANKING

In this section, we show by means of a simple example that the
optimal projection equations may possess nonunique solutions
corresponding to multiple extrema, e.g., local minima or max-
ima. We also show how decomposing the cost can identify the
global minimum from among the numerous extrema. To begin, let
m={(=nR=V=1],

A & diag (~ay, ***, ~ap)
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wherea; > 0,7/ = 1, *- -, n, and suppose B and C are such that
55r=di38 (ﬁh ety Baks CTC'd“E (e

where 8, > 0, 4, > 0, i = 1, -++, n. Hypothesizing diagonal
solutions Q and lS of (2.21) and (2.22) leads to

*e 15!)'

Qﬂ:% 8 pﬁ‘% &,

where each §,, i = 1, +- -, n is either zero or one and exactly n,,
of the §,’s are equal to one. Hence r = diag (5, -, §,). Note
that there are (,_ ) such solutions of the optimal projection
equations corresponding to (3, ) local extrema.

Since

W.= —%A"BBT,

W,= —%A"C’C. Q=1W, P=1W,
and A, W,, and W, commute, (2.15) becomes

J(Am, Bm, Cr)= —% o 7, A~'BBTCTC.

Hence,

-’(Am' Bnn Cm)=z I‘,(l _61)0

i=]

(5.1)

where
$i & B/ 2.

To minimize J, it is clear that §; should be chosen to be unity for
the largest n,, elements of the set {{;}7,, and zero otherwise.
Although this choice is not necessarily unique, it does yield a
global minimum. Note that choosing §, = 1 is equivalent to
selecting a particular eigenprojection I1,] W.W,] corresponding
to the eigenvalue 8;v,/4a?.

Remark 5.1: The expression in (5.1) can be regarded as a
decomposition of the cost in terms of the state variables. The idea
of deleting states based on their *‘component costs’* is precisely
the *‘component cost analysis’™’ approach of Skelton (3], [12].

Using the example, it is easy to see that the balancing method of
{2}, which selects eigenprojections based upon the magnitude of
the eigenvalues of W_W,, i.c., the (squares of the) second-order
modes, may yield a grossly suboptimal reduced-order model. To
this end, let
o= 106' Bl = lo

BZ=106’ 7l=l' 72'_'10’

& =0.5, £ =500.

Clearly, J is minimized (J = {;) by choosing §, = 0, 4, = 1,
which corresponds to truncating the first state variable. If,
however, the method of [2] is utilized, then judging by the second-
order modes

4] =°.5.

the second state variable should be deleted. This, however,
corresponds to choosing 6; = 1, §; = 0 with the higher cost J =
{3. The fact that the balancing approach of [2] fails to determine a
solution of the optimal model-reduction problem should not be
surprising in view of the fact that the error criterion plays no role
in the balancing technique.

Although the above solution exploited the simple structure ot
this example, it is clear that choosing the global minimum from
among the local extrema involves an eigenprojection decomposi-

0:=(2.5)'2 - 10-2=0.012,
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tion of the cost J. To extend this idea to more general systems, ¢
invoke the following heuristic approximation.

Approximation 5.1: Let ¥ define the balanced basis as in
(4.6). Then ¥ also approximately defines a balanced optimal
projection basis, i.e.,

YOV Tn ¥ -Th¥- w52, 5.2
where extremal

fa ‘?ri'"sdiz;g G -0, 80) 5.3

é 6,'=ﬂ,,.

iw]

5€{o, 1},

Proposition $.1: If Approximation 5.1 holds for extremal
(Ams By, Cw) then, with7, & I, ~ 7,

J(Amv By, Cm)~ ~-2r [f_,,EzA]

=2 E"d’?‘,‘i(! "6,'). (5.4)

iml
Remark 5.2: Fsom (4.7) and (4.8), it follows that (5.4) can be
written either as

J(Ap, Bn, Cy)=tr [hXBVBT]

=Y 0(BVBT)(1-5) (5.5)

i=]

or

J(Ap, By, Co)=ir [7,2CTRC)

=Y 0(CTRC)(1-6). (5.6)

Hence, Approximation 5.1 leads to the following component-cost
ranking (again. in the sense of Skelton [3), [12}) of the (5,)
extrema satisfying the optimal projection equations.

Component-Cost Ranking: Assume Approximation 5.1 is
valid and choose the eigenprojections comprising extremal 7 such
that

8,=1, if —o, is among the n,
largest elements of the set {—024,}%;
6,"-"0, otherwise.

For comparison purposes, we shall also consider the following
ranking of the eigenprojections based upon the eigenvalues of
W_W, (i.c., second-order modes).

Eigenvalue Ranking: Choose the eigenprojections comprising
extremal 7 such that

&=1, if ~o2A4; is among the n,
largest elements of the set {~o,}%.,;
6=0, otherwise.

Remark 5.3: The observation that the second-order modes
alone may be a poor guide to determining an optimal reduced-
order model has recently been made in [13] where bounds on the
model-error criterion were given involving both the second-order
modes and suitable weights called balanced gains. 1t can be seen
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.. 'm Proposition 5.1 that the role of balanced gains in our
approach is played by the elements ~ 0,4 ,; when Approximation
5.1 holds. It can also be seen that the balanced gains of Kabamba
yield bounds on the component costs of Skelton.

VI. NUMERICAL SOLUTION OF THE OPTIMAL PRC.ECTION
EQuATIONS

Insofar as the ultimate aim of any model-reduction technique is
1o permit the development of numerical procedures for reducing
high-order models, the optimal projection equations, comprising a
coupled system of modified Lyapunov equations, appear promis-
ing in this regard. Therefore, we present an iterative computa-
tional algorithm that exploits the structure of these equations and
the available insights. The reader is strongly reminded that the
proposed algorithm is but a first attempt at solving these new
equations and alternative algorithms may yet be devised. The
basis of this algorithm is the ability to write the modified
Lyapunov equations (2.21), (2.22) in the form of *‘standard’’
Lyapunov equations (6.1), (6.2) such that the pseudogramians §
and P are extracted at the final step (6.6). It follows from (2.32)-
(2.35) that (2.21), (2.22) are indeed equivalent to (6.1), (6.2)
(with k = ) and (6.6).

Algorithm:

Step 1) Initialize 7@ = /,.

Step 2) Solve for Qi), ptt

0=(A - rArt)G0 4 Gy 4 - pIqNT L BYBT,  (6.1)
0=(A—1ArTRW0 L 4~ s b4 00 L CTRC. (6.2
Step 3) Balance

SIOAUNGUENT = (- THENGUY -1 2 Tek) 6.3)
W =diag (o(0), -+, o¥), oW2e®2 .-+ 20W20.
Step 4) If & > 1 check for convergence

tr (CTRCW.)-tr (CTRCrOQ 0Ty ] 12
. 4
e d [ & (C'RCW,) 64

If |e, — e,.;| < tolerance then go 10 step 8); else continue;
Step 5) Select n,, eigenprojections

o, [Qwpwy, ... I, [Qwh,
M{GWAN) & SWE (B!,
Step 6) Update

ks o 2" n'; [é(k)ﬁ(k)]‘ (6.5)

r=}

Step 7) Check for convergence; if not, increment k and return
to Step 2).
Step 8) Set

Q = 7(0)@(,(0)) T P=(r™) rﬁr"’". (6.6)

For convenience, we shall adopt the notation (4%, B(), C').
where & > 0, to denote the reduced-order modei obtained as a
result of applying the projection ¥, and we define (see Section
Iv)

& A f(A (,:)' B::)' C‘,:,)n
i.¢., the relative error associated with (A®), B®, C%). Note that.

in general, ¢, # ¢, since e, denotes the relative error only for an
extremum, i.e., when convergence has been reached.

e
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It should be clear from the discussion in the previous section
that the crucial step of the algorithm is Step 5)—the choice of the
eigenprojections. For the examples which follow, we shall invoke
consistently at Step S) either the component-cost ranking based
upon Approximation 5.1 or the eigenvalue ranking.

Remark 6.1: Note that in the special R Inand V = I,
the first iteration of the algorithm yields O® = W,, B = W,
If, atSlepS),wechooset, =r,r= l ty Ny, ic., the

eigenprojections are selected according to the engenvalue ranking,
then (A, B, C‘") is precisely the reduced-order model
obtained ancmg

We shall first consider the following example which was treated
by both Wilson and Moore. In this example, and those that follow,
assume R = [,V = I,

Example 6.1:
0060 -15 4
1 00 -245 1
A= o l o —|l3 » B= o » C=[OOOl].
001 -19 0

Table I summarizes the results obtained for the three cases 2,
= 3, 2, | utilizing the eigenvalue ranking. In each case, the
proposed algorithm converged linearly in less than eight iterations
and, in each case, improvement is evident over previously
published results. As pointed out in [2], Wilson’s result seems to
imply a lack of final convergence. For this example, the balancing
approach yields a reduced-order model close to the global
minimum.

We now turn to a pair of interesting examples considered in
[13).

Example 6.2:

_| -0.005 -099 11 T
"’[ -0.99 —sooo] ' B'[loo] » C=B
Table II summarizes the results obtained using the eigenvalue
ranking and Table III gives the results when the component-cost
ranking is used. It is clear that the former method directs the
algorithm to the global maximum whereas the latter approach

yields the global minimum.
Example 6.3:

[-025 -04 BB s
A‘[ —04 -0.72] > B= [1.2] »  C=B.

Table IV reports the results obtained using either the compo-
nent-cost ranking or the eigenvalue ranking which agree for this
example. If the alternative eigenprojection is selected then, as
expected, the algorithm converges to a global maximum (see
Table V). The interesting aspect of this example, as discussed in
[13], is that the error ¢, = 0.5245 (see {13]) for the reduced-order
model obtained by either cigenprojection ranking is actually
greater than ¢, = 0.3849 obtained by choosing the alternative
reduced-order model. This situation seems to indicate that proper
eigenprojection selection based upon a cost decomposition is able
to direct the algorithm to the global minimum in cases for which
the starting values are not nearby.

VIH. THe OpTIMAL PROJECTION EQUATIONS FOR FIXED-ORDER
DynaMIC COMPENSATION AND REDUCED-ORDER STATE
ESTIMATION

We briefly discuss the relationship between the optimal
projection equations for model reduction and analogous results for
reduced-order control and estimation: problems.

Fixed-Order Dynamic-Compensation Problem: Given the
controlled system

X=Ax+Bu+w, a.1n
y=Cx+w,, (7.2)

TABLE 1
RELATIVE ERROR ¢, = ¢,
Optimal Projection
Order n,, Wilson (1] Moore (2] Equations
3 - 0.001311 0.001306
2 0.04097 0.03938 0.03929
1 - 0.4321 0.4268
TABLE 1
EXAMPLE 6.2 WITH EIGENVALUE RANKING
k e
1 0.9950371897
2 0.9950371691
3 0.9950371690

TABLE I

EXAMPLE 6.2 WITH COMPONENT-COST RANKING

k

(13

SO@\IO\M&(&N-—

—
—

v
W

0.0995037
0.0995449
0.0995924
0.0996520
0.0997346
0.0998648
0.1001125
0.1007724
0.1054569
0.0982006
0.0975409
0.0975342
0.0975330
0.0975329

TABLE IV

EXAMPLE 6.3 USING EITHER RANKING
k €

1 0.646996
2 0.41834]
3 0.220994
4 0.177276
5 0.176576

TABLE V

EXAMPLE 6.3 WITH THE OPPOSITE RANKING

k [N

1 0.7624928516
2 0.9999999961
3 0.9999999975
29 0.9999999999

G I BE I NN BN R A BN s ah DS G R B R R
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design a fixed-order dynamic compensator
X=AXx.+B.y, (.3)
u=Cx, 7.4)
which minimizes the performance criterion

J(A., B, C) & 'lj.n: BIxTR,x+u"R-ul, (7.5)

where u € R™, x. € R*, n. < n, w, is white disturbance noise,
w, is nonsingular white observation noise, R, is nonnegative
definite, and R, is positive definite.

Necessary conditions characterizing optimal (4., B,, C,) have
been developed in [18]-[22] along the same lines as the main
theorem. These conditions, called the optimal projection equa-
tions for fixed-order dynamic compensation, consist of four
matrix equations (two modified Riccati equations and two
modified Lyapunov equations) coupled by a projection. The
modified Riccati equations, not surprisingly, are similar in form
to the covariance and cost Riccati equations of LQG theory and
the modified Lyapunov equations are similar to the optimal
model-reduction equations (2.13) and (2.14). Hence, while the
modified Riccati equations govern optimal estimation and optimal
control, the additional modified Lyapunov equations characterize
*‘optimal reduction.” The important fact that all four equations
are coupled supports the view that optimal fixed-order dynamic
compensators cannot, in general, be designed by means of a
stepwise procedure, e.g., by either open-loop model reduction
followed by LQG or LQG followed by closed-loop model
reduction.

Midway between the model-reduction and fixed-order dy-
namic-compensation problems lies the following problem.

Reduced-Order State-Estimation Problem: Given the ob-
served system

x=Ax+ W, (7,6)
y=Cx+w,, a.n
design a reduced-order state estimator

X,=AX.+B.,y, (7.8)
Ye=CpXes (7.9
which minimizes the esiimation c'riterioﬁ
J(A,, B,, C) & lim BI(Lx-y) R(Lx-y)),

where x, € R, L €RP*"e and L identifies the states, or linear
combinations of states, whose estimates are désired. The order n,
of the estimator state x, is determined by implementation
constraints, i.e., by the computing capability available for
realizing (7.8) and (7.9) in real time.

In view of the results already given, it should not be surprising
(see [23)) that the optimal projection equations for reduced-order
state estimation form a system of three matrix equations (a pair of
modified Lyapunov equations along with a single modified Riccati
equation) coupled by a projection which determines the gains of
the optimal reduced-order estimator. This intrinsic coupling
between the ‘‘operations’’ of optimal estimation (the modified
Riccati equation) and optimal model reduction (the pair cf
modified Lyapunov equations) stresses the fact that reduced-order
estimators designed by means of either model reduction followed
by **full-order’’ state estimation or full-order estimation followed
by estimator reduction will generally not be optimal for the given
order.

VIII. DiRecTIONS FOR FURTHER RESEARCH

The most important area of research involves the further
development of algorithms for solving the optimal projection
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equations. Although proving local convergence of the proposed
algorithm appears possible, the more important problem is
achieving global optimality via the component cost approach.
Although the global minimum was attained for all examples
attempted by the authors, it remains to treat considerably more
complex systems.

_An interesting extension of the main theorem involves the case
in which the original system (2.1), (2.2) is a distributed parameter
system, e.g., a partial differential equation or a functional
differential equation. This generalization, which has been referred
to as the *‘ultimate reduced-order problem’’ {24], may lead to the
efficient generation of high-order discretizations for such systems.
All of the mathematical machinery required to generalize the main
theorem to this case has already been applied to fixed-order
dynamic compensation in [25].

IX. ConcLusioN

First-order necessary conditions for quadratically optimal
reduced-order modeling of a lincar time-invariant plant are
expressed in the form of a pair of n X n modified Lyapunov
equations coupled by an oblique projection. This form of the

eC conditions considerably simplifies the originai form
given by Wilson in [1] and clearly reveals the possible presence of
numerous extrema. The balancing method of Moore given in {2]
is shown to yield a reduced-order model that is *‘close” to an
éxtremal given by the necessary conditions. A numerical example
shows, however, that this extremal may very well be the global
maximum rather than the desired global minimum. An algorithm
is proposed which exploits the presence of the optimal projection
and computes the varicus local extrema by the choice of
eigenprojections comprising the projection. A component-cost
ranking of the eigenprojections, which is very much in the spirit of
Skelton’s method in [3] and {12], is used to direct the algorithm to
the global optimum.

It should be pointed out that Moore's balancing appears to have
strong ties with the L, reduction problem via the Hankel norm
[29). Alternative settings for the Hankel operator, however, seem
to indicate connections to the quadratic problem [30]. Finally, the
robustness problem for reduced-order modeling, estimation, and
control in a quadratic setting is discussed in [31].

APPENDIX
PROOF OF THE MAIN THEOREM
Introducing the augmented system
R=A%+ Bu,

§=Cx,
Zh [ *
Xm

Ag[g :..]' Bg[;’]. C&£IC -Cul

leads to the expression
J(Am, Bmy C)=tr QR, (A1)

where

’ iéy-ymc

]

where B & CTRC and the nonnegative-definite steady-state
covariance { of # is given by the (unique) solution of

0=AQ+QAT+V, (A2)

with ¥ & BVBT. To minimize (A.1) subject 1o the constraint (A.2),
form the Lagrangian

L(Am, Bnn Cms Q) &tr leR".‘(A’Q*' QA.T'F V)Pl
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with multipliers A 2 0 and £ € R"*"w)*+"w)_Since @, is an
open set, the standard Lagrange multiplier rule can be applied.

Using formulas for computing partial derivatives [26], it
follows that

0=Ly=ATP+ PA+)E.

Since A = 0 implies P = 0 (recall A is stable), we cantake A = 1
without loss of generality. Hence, P is the (unique nonnegative-
definite) solution of

0=ATP+PA+R. (A.3)

Again using formulas from [26] and performing some manipula-
tion, it follows that

0=LAM=Q|TZP)2+Q2P1, (A.9)
0=Ly, =2(PL,B+P,B.)V, (A.5)
0=Lc,=2R(CnQ:-CQh2), (A.6)

where @ and P have been partitioned as

_1 Q@ Qn <| P P
Q- [ sz Q2 ] ’ P [Plrz Pz ] . (A.7)
Since (as will be seen shortly) Q; and P, are positive definite,
define
G é Q;lQIG’ r é -Pi‘Plrzo (A.S)
so that (A .4)-(A.6) become (2.6), (2.10) and (2.11), respectively.
Next, define the nonnegative-definite matrices
0 & 0:0;'Ql, P LP PP,  (A9)

and note that (A.4) implies that (2.5) holds with M & Q,P;. Since
Q:P; = P;Y(Py2Q,PY?)P)?, M s positive semisimple. The rank
conditions (2.12) follow from Sylvester's inequality. Expanding
(A.2) and (A.3) yields

0=A4Q,+Q,AT+BVBT, (A.10)
0=AQy+QnAl+BVB], (A.11)
0=An0:+ QAT+ BuVB], (A.12)
0=A7TP,+P,A +C'RC, (A.13)
0=A7P;+P;;An—~C'RC,, (A.14)
0=AlP;+PA, +‘C,',RC,,,. (A.15)

Since A, is stable and (4,,, B,,) is controllable, standard results
(e.g., {27, p. 277]) imply that Q, is positive definite, Similarly, P,
is positive definite.

It is easy to see at this point that A,, B,, and C, are
independent of Q, and P, and thus (A.10) and (A.13) can be
ignored. Now, substituting (2.10), (2.11) and the identities

Q=0r7, P,=-FGT, (A.16)
Q:=TQr7, P,=GPGT, (A.17)

into (A.11), (A.12), (A.14), and (A.15) yields
0=AQr7+(0r74AT+BVB™T, (A.18)
0=A,IOr"+TQr’A7+TBVBT, (A.19)
0=A"PG7+ PG A+ CTRCGT, (A.20)
0=A’GPG"+GPG An+GCTRCG'. (A.21)

Computing (A.19)-I'(A.18) implies
An=TAQTTIOrn-!

which, since T'QI'" = Q,, yields (2.9). Alternatively, (2.9) can
be obtained from (A.21)-G(A.20).

If we now substitute (2.9) into (A.18)-(A.21) and use the easily
verified relations (2.20), it follows that (A.19) = T'(A.18) and
(A.22) = G(A.21), and thus (A.19) and (A.21), are redundant.
Finally, G7(A.18)7 and (A.20)T yield (2.13) and (2.14), respec-
tively. Note that these last multiplications entail no loss of
generality since p(G) = p(T') = n,,.

To show that the optimal projection equations entail no loss of
generality over (A.2)-(A.6), let O, B be extremal and define Q,;,
0, P, P; by (A.16) and (A.17) for some (G, M, T)-
factorization of , and let Q,, P, satisfy (A.10) and (A.13).
Then it is straightforward to reverse the steps taken in the proof to
arrive at (A.2)-(A.6). a

Proof of Proposition 2.1: Extremal Q, P leads to 0, P as
in (A.7) satisfying (A.2)—-(A.6). Computing

J(Am, Bn, Cm)=tr (QCTRC-2Q;CTRC) +tr (Q,CTRC,)
=tr [CTRC(W.~Q)},

noting that (2.13), (2.14) are equivalent to (2.21), (2.22) because
of (2.20) and using (2.23), leads to (2.15). a
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The Optimal Projection Equations for Reduced-Order
State Estimation

DENNIS S. BERNSTEIN anp DAVID C. HYLAND

Abstract—First-order necessary comditions for optimal, steady-siate,
reduced-order state estimation for a linear, time-invariant plant in the
presence of correlated disturbance and noasingular measurement noise
are derived in 2 mew and highly simplified form. Ia contrast to the ione
matrix Riccati equation arising in the full-order (Kalman filter) case, the
optimal steady-state reduced-order estimator is characterized by fhree
matrix equstions (one modified Riccati equation amd two modified
Lyapunov equations) coupled by s projection whose rank is precisely
equsal to the order of the estimator and which determines the optimal
estimator gains. This coupling is a graphic reminder of the suboptimality
of proposed approaches involving either model reduction followed by
“full-order”* estimator design or full-order estimator design followed by
estimator-reduction techmiques. The resuits given here complement
receatly obtsined results which characterize the optimal reduced-order
mode! by meaas of & pair of coupled modified Lyapunov equations [7]
and the optimal fixed-order dynamic compensator by means of a coupled
system of two modified Riccati equations and two modified Lyapunov
equations [6].

1. INTRODUCTION

It has recently been shown (see [1]-[7]) that the first-order necessary
conditions for the problems of optimal mode! reduction and optimal fixed-
order dynamic compensation can be formulated in terms of an ‘‘optimal

Manuscript received June 28, 1984, revised September 14, 1984. This work was

wpponed in part by Lincoln Laboratory, M.L.T.
The authors are with Harris Corporation, GASD, Melbourne, FL 32901.
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i propcuon matrix which arises as a direct consequence of optimality.
| These necessary conditions, by virtue of their remarkable simplicity,
jyield insight into the structure of the optimal design and permit the
! development of alternative numerical algorithms {2], {4), {7). The
purpose of this note is to develop analogous first-order necessary
! conditions for the reduced-order statc-estimation problem. Since this
| problem falls midway between the problems of open-loop model
reduction and closed-loop fixed-order dynamic compensation, it is not
surprising that the necessary conditions for these problems are corre-
spondingly related. Specifically, while the optimal projection equations
for model reduction consist of a system of {wo matrix equations (a pair of
* modified Lyapunov equations) and the optimal projection equations for
" fixed-order dynamic compensation comprise a system of four matrix
equations (a pair of modified Lyapunov equations plus a pair of modified
Riccati equations), the optimal projection equations for reduced-order
state estimation form a system of three matrix equations (a pair of
modified Lyapunov equations along with a single modified Riccati
equation). In each case the system of matrix equations is coupled by an
oblique projection (idempotent matrix) which determines the gains of the
optimal reduced-order system, whether it be a model, estimator, or
compensator.

The need for designing an optimal reduced-order state estimator for a
high-order dynamic system follows directly from real-world constraints
on computing capability. A further motivation is the fact that although a
system may have many degrees of freedom, it is often the case that
estimates of only a small number of state variables are actually required.
In the face of these practical motivations, numerous approaches to
designing reduced-order state estimators have been proposed. See (8] for
a recent review of previous results.

An important fact pointed out in [8] and [9) is that reduced-order
estimators designed by means of cither model reduction followed by
‘full-order’’ state estimation or full-order estimation followed by
estimator reduction will not be optimal for the given order. In the present
paper this point is graphically confirmed by the fact that the three matrix
equations characterizing the optimal reduced-order state estimator reveal
intrinsic coupling (via the optimal projection) between the **operations'"
of optimal estimation (the modified Riccati equation) and optimal model
reduction (the pair of modified Lyapunov equations).

1I. PROBLEM STATEMENT AND MAIN RESULT

The following notation and definitions will be used throughout the
paper:

n il n,p positive integers, | s 7, S n

Xy Vs Xes Ve n, l. n,, p-dimensional vectors

AC L nx n, 1 x n p x nreal matrices

A, B, C, n, X n,, n, X I, p x n, real matrices

wi(),t20 n-dimensional white noise with nonne-
gative-definite intensity ¥V,

win,t 20 I-dimensional white noise with posi-
tive-definite intensity V;

Via n x { matrix satisfying E{w\{)wy(s) T
= Vpd(t - 3)

R P X p positive-definite matrix

IA r X r indentity matrix

zZT transpose of vector or matrix Z

zT ZD-'or(Z-Y

N(2Z), R(2), p(Z) null space, range, rank of matrix Z

i ¢ expected value

R, R*s real numbers, r X s real matrices

stable matrix matrix with eigenvalues in open left
half planc

nonnegative-definite matrix symmetric matrix with nonnegative
eigenvalues

positive-definite matrix symmetric matrix with positive eigen-
values

nonnegative-semisimple matrix  matrix similar to a nonnegative-defi-
nite matrix

0018-9286/85/0600-0583501.00 © 1985 IEEE
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positive-semisimple matrix matrix similar to & positive-definite
matrix

positive-diagonal matrix diagonal matrix with positive diagonal
elements

We consider the following optimal reduced-order state-estimation
problem. Given the system

X=Ax+w, 2.1
y=Cx+wy, Q2.2
design a reduced-order state estimator
Xe=Ax,+ By, 2.3
Ye=Cux,, 249

which minimizes the error criterion

KA., B.,C) & lim E{(Lx-y)"R(Lx-y,)}.

In this formulation the matrix L identifies the states, or linear combina-
tions of states, whose estimates are desired. The order 2, of the estimator
state X, is determined by implementation constraints, i.e., by the
computing capability available for realizing (2.3), (2.4) in real time.
Hence, n, is considered to be fixed in what follows and the problem is
concerned with determining A,, B,, and C,.

To guarantee that J is finite it is assumed that A4 is stable and we restrict
our attention to the set of stable reduced-order estimators

@ & {(4,. B, C)) : A4, is sable}.

Since the value of J is independent of the internal realization of the
transfer function corresponding to (2.3) and (2.4), without loss of
generality we further restrict our attention to the set of admissible
estimators

r. & {(A., B,, C)EQ:
(A,, B,) is controllable and (A,. C,) is observable}.

The following lemma, whose proof is given in (7], is needed for the
statement of the main result.

Lemma 2.1: Suppose O, P € 'R"*" are nonncgative definite. Then
QP is nonnegative semisimple. Furthermore, if o(OF) = n,, then there
exist G, ' € 1" and positive-semisimple M € R"*” such that

OF=G™™MT,
IGT=1,,.

(2.5)
(2.6)

For convenience in stating the Main Theorem we shall referto G, I' €
127" and positive-semisimple M € #1"¢> " satisfying (2.5) and (2.6) as a
(G, M, T)-factorization of OP. Furthermore, define the notation

r@GT. 1, &1,~1
and

Q& QCT+V,,

where Q € fH"™".

Main Theorem: Suppose (A,, B,, C)) € @, solves the optimal
reduced-order state-estimation problem. Then there exist nonnegative-
definite matrices Q, O, £ € R"** such that, for some (G, M, T')-
factorization of OP, A,, B,, and C, are given by

A, =T(A-QVi'OGT, @n
B,=TQV;', @.8)
C,=LG’ Q9
and such that the following conditions are satisfied-
0=AQ+QAT+V,-QV;'Q7+7,QV;'QTr], (2.10)
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0=A0+0AT+QV7'QT-r,Q¥;'Q"r], @1
0=(A-QVi'OTA+HA-QVi'O)+LTRL-+ILTRLr,, (2.12)

o) = o(P) = p(QP) = n,. @.13)
Remark 2.1: It is useful to note that (2.7) can be replaced by
A.,=TAG"-B,CG". @.7

Remark 2.2: Because of (2.6) the n X n matrix 7 which couples the
three equations (2.10)~(2.12) is idempotent, i.e., 72 = r. In general, this
“optimal projection’” is an oblique projection (as opposed to an
orthogonal projection) since it is not necessarily symmetric. Note that
from Sylvester’s inequality and (2.6) it follows that p(r) = a,. It should
be stressed that the form of the optimal reduced-order estimator (2.7)-
(2.9) is a direct consequence of optimality and not the result of an a priori
assumption on the structure of the reduced-order estimator.

Remark 2.3: To obtain the standard steady-state Kalman filter result
for the full-order case, setp = n, = nandL = I,. Thenr =G =T =
I, and thus (2.10) reduces to the standard observer Riccati equation [10,
P- 367} and (2.7) and (2.8) yield the usual expressions. Furthermore, it
follows from (2.7)’ {11, Lemma 2.1} and standard results that (2.11)-
(2.13) are equivalent to the assumption that (4,, B,, C,) is controllable
and observable.

Remark 2.4: Since 0P is nonnegative semisimple it has a group
generalized inverse (OP)# given by GTM- T (see, e.g., [12, p. 124)).
Hence, by (2.6) the optimal projection 7 is given by

= QA QF).

Remark 2.5: Replacing x, by Sx,, where § is invertible, yields the
‘‘equivalent’’ estimator (SA.S-', SB,, C.S""). Since J(A,, B., C.) =
J(SAS-', 5B., CS~"), onc would expect the Main Theorem to apply
also to (SA,.S-!, §B,, CS-'"). This is indeed the case since transforma-
tion of the estimator state basis corresponds to the alternative factorization
QP = (S-TG)(SMS~'XST).

Remark 2.6: Note that, for the optimal values of A,, B,, and C,, (2.3)
assumes the observer form

(2.149)

X% =TAGx,+TQV;i'(y~CG'x,). 2.1%)
By introducing the quasi-full-state estimate £ £ G7x, € f1" so that 7§ =
fand x, = T£ € Rt", (2.15) can be written as

R=1A1R+ 1QVi'(y-C%H. (2.16)
Note that although the implemented estimator (2.15) has the state x, €
R", (2.15) can be viewed as a quasi-full-order estimator whose geometric
structure is entirely dictated by the projection r. Specificatly, error inputs
Q¥5;'(y ~ C#) are annihilated unless they are contained in [JU(1)]+ =
®R(r7"). Hence, the observation subspace of the estimator is precisely
R(r7).

Remark 2.7: Although the form of (2.16) would lead one to surmise
that the optimal reduced-order estimator is a projection of the optimal fuli-
order estimator, this is not generally the case for the following simple
reason. In the full-order case Q (which appears in Q) is determined by
solving a single Riccati equation, whereas in the reduced-order case Q
must be found in conjunction with @ and P to satisfy all three matrix
equations (2.10)~(2.12). Hence, the value of Q in the reduced-order case
may be different from the value of Q in the full-order case. Thus. (2.16)
may not be obtainable by simply projecting the full-order result.

To further clarify the relationship between (0, B, and 7, we now show
that there exists a similarity transformation which simultaneously
diagonalizes QP and 7.

Proposition 2.1: There exists invertible ® € §1"** such that

QO=¢' ["00 8] *7, P=97 [':)" g] e, Q.17

Of=¢-' [‘(‘) g] b, r=d [,6' g] &, (2.18ab)

I
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where Ag. Ap € [R"** ase positive diagonal, A & ApAp, and the
diagonal elements of A are the eigenvalues of M. Consequently,

0=10, P=br.

ITl. PROOF OF THE MAIN THEOREM

2.19)

The proof proceeds exactly as in {6]. Using the fact that @, is open, the
Fritz John version of the Lagrange multiplier theorem can be used to
rigorously derive the first-order necessary conditions

0=AQ+QPAT+ P, W)
0=A7P+PA+R, 3.2
0=PL,0,:+P:0n (3.3)

B,= ~[(P;'PT,Q1+ QT)CT+ Py 'PTV,lVi ", (3.49)
C.=LQu05", .9

where
il 4 o oa| ¥ VB!
B,C A, * nyﬂ B,V;BI ’
g-| L'RL -L7Rc,
~-CIRL CIRC,
and (n + n,) x (n + n)Q, Pare panitioned inton x n, n x n,, and n,
x n, subblocks as

e @ | P Pe
e[ %] [ %]

Expanding (3.1) and (3.2) yields

0=AQ + QAT+ VY, 3.6
0=AQ;;+QuAT+QuUB.C)T+ V,B!, 3.7
0=A4,0:+QA]+B,.CQ1+QI(B.C)Y +B,V,B], (3.8)
0=AP,+PA+(B,CYPl,+P,BC+LTRL, 3.9
0=PuA,+ AP+ (BOYP, - L'RC,, (3.10)
0=AIP,+ PA,+ CIRC,. @a.1

Note that (3.9) is superfluous and can be omitted. Writing (3.8) as (see
(13}, 14D
0=(A,+ B,CQ,Q: )01+ QA+ B,CQ,Q7 ) + B,V,8],

where Q7 is the Moore-Penrose or Drazin generalized inverse of Q;, it
follows from {11, Lemmas 2.1 and 12.2] that @, is positive definite.
Similarly, (3.11) implies that P; is positive definite. This justifies (3.4)
and (3.5).

Now define the 7 X n nonnegative-definite matrices (see [13), [14])

Q=01-QuQ:'Qn. 0=0,0:'Q7,
and note that (3.3) implies (2.5) and (2.6) with

P=P,P;'PT,
G=Q'Ql., M=Q\P,, T=-P;'P],.

Since Q:P; = P; VY PI2Q,PYY)PY?, M is positive semisimple. Sylves-
ter’s inequality yields (2.13). Note (2.19) and the identities

Q=0+0, (3.12)
Q.=0r7, P,= - PG, (3.13)
Q,=TQr", P,=GPG'. 3.19

Using (3.12)-(3.14), (3.4) and (3.5) yield (2.8) and (2.9). Also, the
right-hand sides of (3.8) and (3.7) yield (2.7). Substituting (2.7)-(2.9)
ino (3.6)-(3.8), (3.10) and (3.11), it can be seen that (3.8) and (3.11) are
also superfluous. Finally, lincar combinations of the remaining three
equations (3.6), (3.7), and (3.10) yield (2.10)-(2.12).

IV. CONCLUDING REMARKS

The question of multiple local minima satisfying the optimal projection
equations for reduced-order state estimation and the problem of construct-
ing numerical methods for solving these equations are beyond the scope of
this note. It should be pointed out, however, that promising numerical
results for the model-reduction and fixed-order dynamic-compensation
problems have been obtained by means of iterative algorithms that ke
full advantage of the presence and structure of the optimal projection [2),
. (7.

Finally, the results of this paper can be extended to include the
following related problems: 1) discrete-time system/discrete-time estima-
tor; 2) infinite-dimensional system/finite-dimensional estimator {5]; and
3) parameter uncertainties (1], {15}, [16].

ACKNOWLEDGMENT

The authors wish to thank Dr. F. M. Ham for directing their attention
to the reduced-order state-estimation problem as a fruitful application of
the optimal projection approach.

REFERENCES

(1] D. C. Hyland, *‘Optimality conditions for fixed-order dynamic compensation of
flexible spacecraft with uncertain " AIAA 20th Aerosp. Sci. Meet.,
Orlando, FL, Jan. 1982, paper 82-0312.

2] ——, “‘The optimal projection approach to fixed-order compensation: Numerical
methods and illustrative results.”* AIAA 21st Aerosp. Sci. Meet.. Reno. NV, Jan.
1983, paper 83-0303.

{3] D.C. Hyland and D. S. Bernstein, **Explicit optimality conditions for fixed-order
dynamic compensstion,’’ in Proc. 22nd IEEE Conf. Decision Conir., San
Antonio, TX, Dec. 1983, pp. 161-165.

f4) D. C. Hyland. **Comparison of various ler-reduction P
versus optimal projection,”* in Proc. AIAA Dynam. Specialists Conf.. Palm
Springs. CA, May 1984, pp. 381-389.

(5] D.S. Bemnstein and D. C. Hyland, **The optimal projection eq for fixed-
order dynamic compensation of distributed parameter systems.'* presented at the
AlAA Dynam. Specialists Conf., Palm Springs. CA, May 1984,

{6] D. C. Hyland and D. S. Bemnstein, ‘‘The optimal projection eq for fixed-
order dynamic compensation.” JEEE Trans. Automat. Contr., vol. AC-29, pp.
1034-1037, 1984,

[7) ——. '“The optimal projection approach to model reduction and the relationship
between the methads of Wilson and Moore.'* in Proc. 23rd Conf. Decision
Contr., Las Vegas, NV, Dec. 1984.

[8] C.S. Sims, *'Reduced-order modelling and filtering."" in Control and Dynamic
Systems, Vol. (8, C. T. Leondes, Ed.. 1982, pp. 55-103.

(9] D. A. Wilson and R. N Mishra, **Design of low order estimators using reduced
models,’” Int. J. Contr., vol. 23, pp. 447-456, 1979

[10) K. Kwakemask and R. Sivan, Linear Optimal Control S
Wiley-Interscience, 1972.

ft1] W. M. Wonham, Linear Multivariable Conirol: A Geometric Approach.
New York: Springer-Verlag. 1974.

{121 S. L. Cambell and C. D. Meyer, Jr.. Generalized Inverses of Linear
Transformations. London: Pitman, 1979.

{13] A. Albert, “*Conditions for positive and nonnegative definiteness 1n terms of
pseudo inverse,”* SIAM J. Appl. Math., vol. 17, pp. 434-440, 1969

{14] E. Kreindler and A. Jameson, “*Conditions for nonnegativeness of partitioned
matrices.”” JEEE Trons. Automat. Contr., vol. AC-17, pp. 147-148, 1972,

{t5] P.J. McLane, “"Optimal linear filtering for linear systems with state-dependent
noise.”* Int. J. Contr., vol. 10, pp. 42-51, 1969.

{16] D. S. Bermstein and D. C. Hyland, *Opumal projection/maximum emropy
stochastic modeling and reduced-order design synthesis,”” [FAC Workshop on
Model Error and Concepts and Comp ion, B MA. June 198S.

hode: Cuh o af

New York:

0018-9286/85/0600-0585501.00 © 1985 IEEE




1034 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.. AC-29. NO 11, NOVEMBER 1984

The Optimal Projection Equations for Fixed-Order
Dynamic Compensation

DAVID C. HYLAND anp DENNIS S. BERNSTEIN

Abstract—First-order necesssry conditions for quadratically optimal,
steady-state, fixed-order dynamic compensation of a linesr, time-invari-
ant plant in the presence of disturbance and observation noise are derived
in 8 new and highly simplified form. In contrast to the pair of matrix
Riccati equations for the full-order LQG case, the optimal steady-state
fixed-order dynamic compensator is characterized by four matrix equa-
tions (two modified Riccsti equations and two modified Lyapunov
equations) coupled by a projection whose rank is precisely equal to the
order of the compensator and which determines the optimal compensator
gains. The coupling represents & graphic portrayal of the demise of the
classical separation principle for the reduced-order controller case.

L. INTRODUCTION

Because of constraints imposed by on-line computations, dynamic
controllers for high-order systems such as flexible spacecraft must be of
relatively modest order. Hence, this paper is concernsd with the design of
quadratically optimal, fixed-order (i.e., reduced-order) dynamic compen-
sation for a plant subject 1o stochastic disturbances and nonsingular
measurement noise. Since white noise in all measurement channels
precludes direct output feedback (see Section Ii), only purely dynamic
controllers are considered. The requirements for resolution of this
optimization problem include the following.

1) Conditions for the existence of an optimal, stabilizing compensator
of the prescribed order. (In the full-order case these are the usual
stabilizability and detectability conditions of LQG theory.)

2) Stationary conditions, i.e.. first-order necessary conditions, ren-
dered in a tractable form to facilitate developments in items 3) and 4)
betow. (In the full-order case these conditions are precisely the LQG gain
relations together with the regulator and observer Riccati equations.)

3) Sufficiency conditions. i.e.. additional restrictions on solutions of
the first-order necessary conditions which characterize local minima and
single out the global minimum. (In the full-order case the global
minimum is distinguished by the unique nonnegative-definite solutions to
the LQG Riccati equations.)

4) Convergent numerical algorithms for simultaneous satisfaction of
the necessary and sufficient conditions. (In the full-order case numerical
algorithms have been devised which wake full advaniage of the highly
structured form of the Riccati equativns.)

Manuscript received August 15, 1981 revised February 14, 1983, This paper is based
an a prior submission of March 10, 1983, Paper recommended by P R Kumar, Past
Chatrman of the Stochastic Control Committee  This work was supponied by the
Deparunent of the Air Force and was pertarmed at Lincola Laboratory, M1 T

The authors are with the Controls Anaty s and Synthesis Group. Harns Corp.. GASD,
Melbourne, FL 32902,
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The present paper deals cxclusively with item 2). Although the
stationary conditions for the fixed-order compensation problem have been
written down (see {1]-[12], for example), full exploitation has undoubt-
edly been impeded by their extreme complexity [sec (3.3)-(3.11)). What
has been lacking. 10 quotc the insightful remarks of [9], ‘‘is a deeper
understanding of the structural cohercnce of these equations.”” The
contribution of the present paper 1s to show how the originally very
complex stationary conditions can be transformed without loss of
generality to much simpler and more tractable forms. The resulting
equations (2.10)-(2.17) preserve the simple form of LQG relations for the
gains in terms of covariance and cost matrices which, in tumn, are
determined by a coupled system of two modified Riccati equations and
two modified Lyapunov equations. This coupling, by means of a
projection (idempotent matrix) whose rank is pecisely equal to the order
of the compensator, represents a graphic portrayal of the demise of the
classical separation principle for the reduced-order controller case. When.
as a special case, the order of the compensator is required to be equal to
the order of the plant, the modified Riccati equations reduce to the
standard LQG Riccati equations and the modified Lyapunov equations
express the proviso that the compensator be minimal, i.e., controliable
and observable. Since the LQG Riccati equations as such are nothing
more than the necessary conditions for full-order compensation, we
believe that the *‘optimal projection equations’’ provide a clear and simple
generalization of standard LQG theory.

Since we are concerned with optimal fixed-order compensator design,
our approach does not represent yet another model- or controller-
reduction scheme along the lines of [13]-[17]. Indeed, the optimal
projection equations, by virtue of their relatively transparent structure,
can reveal the extent to which the design equations of a given ad hoc
reduction scheme conform to the necessary conditions for optimality. For
example, the oblique projection which arises in the present formulation
may not be of the form [} 3] even in the basis corresponding to the
*‘balanced’” realization [13]-[16]. These issues are discussed in (18]
where the results of [19} are simplified by means of the approach of the
present paper and where the balancing method of {13] is reinterpreted in
the context of optimality theory.

The fact that the optimal projection equations consist of four coupled
matrix equations, i.c., two modified Riccati equations and two modified
Lyapunov equations, should not be at all surprising for the following
simple reason. Reduced-order control-design methods often involve either
LQG applisd to a reduced-order model or model reduction applied to a
full-order LQG design. Both approaches, then, involve the solution of
precisely four equations: two Riccati equations (for LQG) plus two
Lyapunov equations (for model reduction via balancing, as in [13]). The
coupled form of the optimal projection equations is thus a strong
reminder that the LQG and order-reduction operations cannot be iterated
but must, in a certain sense, be performed simultaneously.

II. PROBLEM STATEMENT AND THE MAIN THEOREM

Given the control system

X1y = Ax(1) + Bu(t) + wy(1), QZ. 1)
W)= Cx(r) + wyr) (2.2)
design a fixed-order dynamic compensator
XA =Ax. (1) + By(1), 2.3
u(r) = Cx (1) (2.4)

which minimizes the steady-state performance criterion
HAc, B, C) A tim Ex()TRx(0) + u() TR (1) @5

where: x € 1", u € 8", y € H', x. € §",n_< n,A,B,C A,B,
C., Ry, and R; are matrices of appropriate dimension with R, (symmetric)
nonnegative definite and R, (symmetric) positive definite; w, is white
disturbance noise with 7 x 1 nonncgative-definite intensity ¥, and w, is

R
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white observation noisc with / x / positive-definite intensity V3, w, and
w, arc uncorrelated and have zero mean. We note that the assumptions of
nonsingular control weighting and nonsingular observation noise preclude
the use of direct output feedbalk as in

u(t) = Cx () + D y(1) (2.6)
since J is undefined unless (see [7])

tr [DIRDV3)=0 (=) R:D.V;=0). @7

To guarantee that J is finite and independent of initial conditions we
restrict our attention to the set of admissible stabilizing compensators

ad {(A,. B.C) A [BTC ‘;‘:'] is asymptotically stablc}
where A is the closed-loop dynamics matrix. Since the value of J is
independent of the internal realization oi the compensator, we can further
restrict our attention to

a. é ((Arn Bn C:) € Q:

(A,, B.) is controllable and (C., A.) is observable}.

For the following lemma call a square matrix nonnegative (respectively,
positive) semisimple if it has a diagonal Jordan form and nonnegative
(respectively, positive) eigenvalues. Let /, denote the r X r identity
matrix.

Lemma 2.1: Suppose O, P € R"*~ are nonnegative definite. Then
{F is nonnegative semisimple. Furthermore, if rank QP = n, then there
exist G, I' € R"<*" and positive-semisimple M € R”"¢*"c such that

QB=G™™T, 2.8)

rG’=1,. 2.9

Proof. The result is an immediate consequence of [20, Theorem
6.2.5, p. 123}. O

For convenience in stating the Main Theorem, define
T 48R;'BT,2ACTY;IC
and call G, M, and T satisfying (2.8) and (2.9) a (G, M, I')-factorization
of OP.
Main Theorem: Suppose (A, B, C,) € @, solves the steady-state
fixed-order dynamic-compensation problem. Then there exist n X »n

nonnegative-definite matrices Q, P, 0, and P such that A, B,, and C, are
given by

A.=IA-0%-3P)GT, (2.10)
B.=TQCTV;!, Q.11
C.=-R;'B'PGT 2.12)

for some (G, M, T')-factorization of 0P, and such that with r & G'T the
following conditions are satisfied:

0= (A4 -102)Q0+ QA - 1QS) T+ V, + 7QSQ-T, @2.13)
0=(A-SPr)7P+ P(A-IPr)+R, +17PEPr, @2.14)
0=r{(4 -EZP)0+ A -ZP)T+ QLQ), 2.15)
0={(4-Q%)"F+ A4 - QL)+ PLPIr, (2.16)
rank Q=rark P=rank OP=n,. Q.17

Remark 2.1: Because of (2.9) the n x n matrix 7 which couples the
four equations (2.13)-(2.16) is idempotent, i.¢., 7? = 7. In general this
‘*optimal projection’” is an oblique projection (as opposed to an
orthogonal projection) since it is not necessarily symmetric. Note that
Sylvester's inequality and (2.9) imply that rank + = n,.

Remark 2.2: Using the relations ¢ = rQ and P = Pr {see (3.12)],
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the optimal projection equations (2.13)-(2.16) can be written in the
equivalent form

0=AQ+QAT+V,-QEQ+1,QE0r, (2.18)
0=A"P+PA+R,-PIP+1TPZPr,, 2.19
0=(4-3P)Q+ XA -3P)7+QLQ-1, QL0+, 2.20)
0=(4-Q%L)"P+P(A-QL)+ PEP-+TPEPr, .21

where 7, 8 1, — 7. Note that in the full-order casc n=n1r=G="T
= [, and thus (2.18) and (2.19) reduce to the standard observer and
regulator Riccati equations and (2.10)-(2.12) yield the usual LQG
expressions. Furthermore, it can be shown that (2.20), (2.21), and (2.17)
are equivalent to the assumption that (4., B., C.) is controllable and
observable.

Remark 2.3: Since QP is nonnegative semisimple it has a group
generalized inverse (OP)' given by GTM - 'T* (see e.g., [21, p. 124)).
Hence, by (2.9) the optimal projection r is given by

r=0QP(0PF). (2.22)

Remark 2.4: The modified Riccati equations (2.13) and (2.14) are
similar to the (single) “‘extended algebraic Riccati equation’” which arises
in the static output feedback problem (see, e.g., [22]).

Remark 2.5: Replacing x. by Sx., where S is invertible, yields the
““equivalent’”’ compensator (SAS ~*, SB,, CS-"). Since J(A,, B., C))
= J(SAS !, 5B, CS~") onc would expect the Main Theorem to apply
also to (SAS ', SB., C.S~'). This is indeed the case since transforma-
tion of the compensator statc basis corresponds to the alternative
factorization P = (S-7G)T (SMS-') (ST). See [10] for related
remarks.

Remark 2.6: By introducing the quasi-full-state estimate £ & G'x, €
31" so that 72 = £ and x, = T2 € "¢, (2.1)-(2.4) can be written as

x=Ax+BC.18+w,,
£=1A-B.C+BC)r2+1B.(Cx+w)

where B, 8 QCTV; ' and C, @ - R;'BTP. Although the implemented
compensator has the state x. € R"¢, it can be viewed as a quasi-full-order
compensator whose geometric structurs is entirely dictated by the
projection 7. Sensor inputs B,y are annihilated unless they are contained
in [(QUn]* = R(r7). where I and ® denote null space and range.
Furthermore, the quasi-full-order state estimate r£ employed in the
control input is contained in ® (7). Thus, R(7) and R(r7) are the control
and observation subspaces of the compensator.

Il. PROOF OF THE MAIN THEOREM

The proof given here considerably simplifies the original derivation
given in (23] and [24]. Using the fact that @, is open, the Fritz John
version of the Lagrange multiplier theorem can be used to rigorously
derive the first-order necessary conditions ({7], see also [25])

0=A0+0AT+V, (.1
0=A7F+PA+R, (3.2)
0=PT,0,:+P,0s, (3.3)
B.= -(P;'PL,Qi+ QT)CTV; !, (3.9
C.= = R;'BT(P,Q,Q; '+ Pyy), (3.5

where

pal® 0 galk 0
=l o BVBI]’ =1 0o CIreC.

and (n + n) x (n + n)Q, Pare paniitioned into n x n, n x n,, and
n. %X nsubblocks as

o @ | A P
Q'[o.’; o:]' p‘[P.@ P]

e |

Expanding (3.1) and (3.2) yields

0=AQ+QAT+BC.QT,+Qu(BC) +V,, (3.6)
0=AQ:;+ QnAl+BC.Q+ QuUB.C), a.n
0=A.0:+ QA7+ B.CQ,+ Q'(B.C)T+B,V,B!, (3.8)
0=ATP +P,A+(B.C)"PT,+ P,B.C+R,, 3.9
0=P,A.+ATP,+(B.C)'P,+ P.BC., (3.10)
0=AIP;+ P,A.+(BC,)"P;+ PL,BC.+ CIR,C,. G.1D

Writing (3.8) as (see [26], [27])
0=(A.+ B(CQ12Q; )0+ QZ(Ar + BcCQIZQ; ) T+ B, VIBcr

where Q2 is the Moore-Penrose or Drazin generalized inverse of Qs, it
follows from [28, Lemmas 2.1 and 12.2] that Q: is positive definite.
Similarly, (3.11) implies that P, is positive definite. This justifies (3.4)
and (3.5).

Now define the n x n ponnegativc-definite matrices (see {26], {27])

Q40-0.0;'00,

g4 01:0;'07, PA PuP;IPT,
and note that (3.3) implies (2.8) and (2.9) with

P éP.—P.;P;‘P{z,

GSA!Q;' .rngQJ’hrﬂ-P{'P,r,.

Since Q,P, = P;'A(P}2Q,PY)P})?, M is positive semisimple.
Sylvester’s inequality yields (2.17). Note also that
0=rQ, P=PFr. (.12)

Next (2.11) and (2.12) follow from (3.4) and (3.5) by using the
identities

Q=Q0+@, P,=P+5, 3.13)
Q= Qr7, P;= - BGT, (3.14)
0,=TQr7, P,=GPG". (3.15)

Now substitute (2.11), (2.12), and (3.13)~(3.15) into (3.6)-(3.11) and use
the relations

B.C=TQS, BC.= —-IPG",
B.V,BI=TQSQT’, CIR,C.= GPSPG’.

Then (2.10) follows from (3.8)-I'(3.7). Substituting (2.10) into (3.7),
(3.8), (3.10), and (3.11) shows that ((3.7)G)T and -(3.10)T" are
precisely (2.15) and (2 16). Since G7(3.8)G = (2.15)rand I'7(3.11)I =
7(2.16), (3.8) and (3.11) can be omitted. Finally, using (3.12) it follows
that (2.13) = (3.6) + (2.15)r - (2.15)-(2.15)7 and similarly for
2.14). ]

IV. DIRECTIONS FOR FURTHER RESEARCH

With regard to the existence of a stabilizing compensator, known
results (e.g., [28]-[34])) can be exploited to a great extent. A numerical
algorithm for solving the optimal projection equations has been developed
in [24] and [35]. The proposed computational scheme is philosophically
quite different from gradient search algorithms [2], {3), [6), [7). [9). [11].
[36], (37] in that it operates through dirct solution of the optimal
projection equations by iterative refinement of the optimal projection.
Methods for eliminating local extrema are being investigated by applying
component cost analysis [17]. Generalizations of the optimal projection
equations can arise by considering the following extensions of the fixed-
order dynamic-compensation problem.

1) Discrete-Time System/Discreie-Time Compensaior: Digital im-
plementation can be modeled by a discrete-time compensator with control
of a continuous-time system faciliated by sampling and reconstruction
devices.
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2) Cross Weighting/Correlated Disturbance and Observation
Noise: This extension is straighforward and cntircly analogous to the
LQG case (see, e.g., [3. p. 351]).

3) Singular Observation Noise/Singular Control Weighting: With
due atiention to (2.7), direct output feedback can be used in the singular
case. The nature of the problem forebodes all of the difficulties associated
with the singular LQG problem. Note that the output feedback problem
[22], [38], when viewed in this context, is highly singular.

4) Infinite-Dimensional Systems: The optimal projection equations
have been extended in [39] and [40) to the case in which (2.1) is a
distributed parameter system. for example, a partial or functional
differential equation.

5) Decentralized Fixed-Order Controller: The optimal projection
equations can be derived for the case in which the dynamic controller has
a fixed decentralized structure.

6) Parameter Uncertainties: The original derivation in [23] treated a
Stratonovich state-dependent noise mode! representing parameter uncer-
tainties in the plant. Further consideration of control- and measurement-
dependent noise raises the possibility of directly including the impact of
parameter uncertainties in the design of robust, implementable compensa-
tion for large-order systems.
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THE OPTIMAL PROJECTION EQUATIONS FOR FINITE-DIMENSIONAL
FIXED-ORDER DYNAMIC COMPENSATION OF
INFINITE-DIMENSIONAL SYSTEMS*

DENNIS S. BERNSTEINt anD DAVID C. HYLAND?

Abstract. One of the major difficuities in designing implementable finite-dimensional controllers for
distributed parameter systems is that such systems are inherently infinite dimensional while controller
dimension is severely constrained by on-line computing capability. While some approaches to this probiem
initially seek a correspondingly infinite-dimensional contro} law whose finite-dimensional approximation
may be of impractically high order, the usual engineering approach involves first approximating the
distributed parameter system with a high-order discretized model followed by design of a relatively low-order
dynamic controller. Among the numerous approaches suggested for the latter step are model/controlier
reduction techniques used in conjunction with the standard LQG result. An alternative approach, developed
in {36), relies upon the discovery in [31] that the necessary conditions for optimal fixed-order dynamic
compensation can be transformed into a set of equations possessing remarkable structural coherence. The
present paper generalizes this result to apply directly to the distributed parameter system itself. In contrast
to the pair of operator Riccati equations for the “full-order” LQG case, the optimal finite-dimensional
fixed-order dynamic compensator is characterized by four operator equations (two modified Riccati equations
and two modified Lyapunov equations) coupled by an oblique projection whose rank is precisely equal to
the order of the compensator and which determines the optimal compensator gains. This * optimal projection™
is obtained by a full-rank factorization of the product of the finite-rank nonnegative-definite Hilbent-space
operators which satisfy the pair of modified Lyapunov equations. The coupling represents a graphic portrayal
of the demise of the classical separation principle for the finite-dimensional reduced-order controller case.
The resuits obtained apply to a semigroup formulation in Hilbert space and thus are applicable to control
problems involving a broad range of specific partial and functional differential equations.

Key words. optimality conditions, finite-dimensional fixed-order dynamic compensator, infinite-
dimensional system, distributed parameter system, semisimple operator, oblique projection, Drazin general-
ized inverse

1. Introduction. One of the major difficulties in designing active controliers for
distributed parameter systems is that such systems are inherently infinite dimensional
while implementable controllers are necessarily finite dimensional with controller
dimension severely constrained by on-line computing capability. As pointed out by
Balas ([1], see also [2]), control design for distributed parameter systems entails the
practical constraints of 1) finitely many sensors and actuators, 2) a finite-dimensional
controller and 3) natural system dissipation. The validity of 2) is apparent from the
fact that processing and transmitting electrical signals by conventional analog or digital
components constitutes finite-dimensional action. Although distributed parameter
devices can also be utilized, their fabrication and implementation can incorporate at
most a finite number of design specifications.' Hence, although distributed parameter
systems are most accurately represented by infinite-dimensional models, real-world

® Received by the editors December 6, 1983, and in revised form September 15, 1984. This work was
performed at Lincoln Laboratory/MIT and was sponsored by the Department of the Air Force.
t Harris Corporation, Government Aerospace Systems Division, Controls Analysis and Synthesis Group,

" Melbourne, Florida 32901.

' Examples of such components include tapped delay lines and surface acoustic wave devices. Although
acoustoefectric convolvers {3, p. 465] can perform continuous-time integration, synthesis of the desired
impulse-response kernel can incorporate only finitely many specified parameters. The obvious fact should
also be noted that physical [imitations impose an upper bound on the number of design parameters that
can e incorporated in the construction of any device. For an extensive treatment of this subject, see [72).
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constraints require that implementabie controllers be modelled as lumped parameter
systems.

Clearly, the above observations effectively preclude the possibility of realizing
infinite-dimensional controllers that involve full-state feedback or full-state estimation
(see, e.g., [4]-[6] and the numerous references therein). Although finite-dimensional
approximation schemes have been applied to optimal infinite-dimensional control laws
([71-[9]), these resuits only guarantee optimality in the limit, i.e., as the order of the
approximating controller increases without bound. Hence, there is no guarantee that
a particular approximate (i.e., discretized) controller is actually optimal over the class
of approximate controllers of a given order dictated by implementation constraints.
Moreover, even if an optimal approximate finite-dimensional controller could be
obtained, it would almost certainly be suboptimal in the class of all controllers of the
given order.

Although the usual engineering approach to this problem is to replace the dis-
tributed parameter system with a high-order finite-dimensional model, analogous,
fundamental difficulties remain since application of LQG leads to a controller whose
order is identical to that of the high-order approximate model. Attempts to remedy
this problem usually rely upon some method of open-loop model reduction or closed-
loop controller reduction (see, e.g., [10]-[15]). Most of these techniques (with the
exception of [11]) are ad hoc in nature, however, and hence guarantees of optimality
and stability may be lacking.

A more direct approach that avoids both model and controller reduction is to fix
the controller structure and optimize the performance criterion with respect to the
controller parameters. Although much effort was devoted to this approach (see, e.g.,
[16]-[30]), progress in this direction was impeded by the extreme complexity of the
nonlinear matrix equations arising from the first-order necessary conditions. What was
lacking, to quote the insightful remarks of [24], was a *“‘deeper understanding of the
structural coherence of these equations.” The key to unlocking these unwieldy equations
was subsequently discovered by Hyland in{31] and developed in [32]-[36]. Specifically,
it was found that these equations harbored the definition of an oblique projection (i.e.,
idempotent matrix) which is a consequence of optimality and not the result of an ad
hoc assumption. By exploiting the presence of this “‘optimal projection,” the originally
very complex stationary conditions can be transformed without loss of generality into
much simpler and more tractable forms. The resuiting equations (see [36, (2.10)-(2.17)))
preserve the simple form of LQG relations for the gains in terms of covariance and
cost matrices which, in turn, are determined by a coupled system of two modified
Riccati equations and two modified Lyapunov equations. This coupling, by means of
the optimal projection, represents a graphic portrayal of the demise of the classical
separation principle for the reduced-order controller case. When, as a special case,
the order of the compensator is required to be equal to the order of the plant, the
modified Riccati equations immediately reduce to the standard LQG Riccati equations
and the modified Lyapunov equations express the proviso that the compensator be
minimal, i.e., controllable and observable. Since the LQG Riccati equations as such
are nothing more than the necessary conditions for full-order compensation, the
“optimal projection equations™ appear to provide a clear and simple generalization
of standard LQG theory.

The fact that the optimal projection equations consist of four coupled matrix
equations, i.e., two modified Riccati equations and two modified Lyapunov equations,
can readily be explained by the following simple reason. Reduced-order control-design
methods often involve either LQG applied to a reduced-order model or model reduction
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applied to a full-order LQG design, and hence both approaches require the solution
of precisely four equations: two Riccati equations (for LQG) plus two Lyapunov
equations (for system reduction via balancing, as in [12], [14]). The coupled form of
the optimal projection equations is thus a strong reminder that the LQG and order-
reduction operations cannot be iterated but must, in a precise sense, be performed
simultaneously. This situation is partly due to the fact that the optimal projection matrix
may not be of the form [y 3] even in the basis corresponding to the “balanced"
realization [12], [14]. This point is explored in [37], {37a] where the solution to the
optimal model-reduction problem is characterized by a pair of modified Lyapunov
equations which are also coupled by an oblique projection.

Returning now to the distributed parameter problem, it should be mentioned that
notable exceptions to the previously mentioned work on distributed parameter control-
lers are the contributions of Johnson [38) and Pearson [39], [40] who suggest fixing
the order of the finite-dimensional compensator while retaining the distributed para-
meter model. Progress in this direction, however, was impeded not only by the
intractability of the optimality conditions that were available for the finite-dimensional
problem (as in {16]-[30]), but also by the lack of a suitable generalization of these
conditions to the infinite-dimensional case. The purpose of the present paper is to
make significant progress in filling these gaps, i.e.,, by deriving explicit optimality
conditions which directly characterize the optimal finite-dimensional fixed-order
dynamic compensator for an infinite-dimensional system and which are exactly
analogous to the highly simplified optimal projection equations obtained in [31]-[34],
[(36] for the finite-dimensional case. Specifically, instead of a system for four matrix
equations we obtain a system of four operator equations whose solutions characterize
the optimal finite-dimensional fixed-order dynamic compensator. Moreover, the
optimal projection now becomes a bounded idempotent Hilbert-space operator whose
rank is precisely equal to the order of the compensator.

The mathematical setting we use is standard: a linear time-invariant differential
system in Hilbert space with additive white noise, finitely many controls and finitely
many noisy measurements (thus satisfying the first practical constraint mentioned
above). The input and output maps are assumed to be bounded. Since the only explicit
assumption on the unbounded dynamics operator is that it generate a strongly con-
tinuous semigroup, the results are potentially applicable to a broad range of specific
partial and functional differential equations. The actual applicability of our results is
essentially limited by practical constraint 3). Since we are concerned with the steady-
state problem, we implicitly assume that the distributed parameter system is stabilizable,
i.e., that there exists a dynamic compensator of a given order such that the closed-loop
system is uniformly stable. We note that stabilizing compensators do exist for the wide
class of problems considered in [41] and [42] which includes delay, parabolic and
damped hyperbolic systems. The question of how much damping is required for
stabilizability of hyperbolic systems is a crucial issue in designing controllers for large
fiexible space structures [7], [43]-[49a].

It is important to point out that the results of this paper can immediately be
specialized to finite-dimensional systems by requiring that the Hilbert space characteriz-
ing the dynamical system be finite-dimensional. Then all unboundedness considerations
can be ignored, adjoints can be interpreted as transposes and other obvious sim-
plifications can be invoked. The only mathematical aspect requiring attention is the
treatment of white noise which, for general handling of the infinite-dimensional case,
is interpreted according to [61.? For the finite-dimensional case, however, the standard
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classical notions suffice and the results go through with virtually no modifications.

The contents of the paper are as follows. Section 2 contains preliminary notation
in addition to particular results for use later in the paper. Section 3 presents the optimal
steady-state finite-dimensional fixed-order dynamic-compensation problem and the
Main Theorem gives the necessary conditions in the form of the optimal projection
equations (3.15)-(3.18). We then develop a series of results which serve to elucidate
several aspects of the Main Theorem. Section 4 is devoted to the proof of the Main
Theorem. The reader is alerted to the two crucial steps required. The first step involves
generalizing to the infinite-dimensional case the derivation of the necessary conditions
in their “primitive” form (see (4.27)-(4.29) and (4.48)-(4.53)). The derivation in
[311-[33], [36] involving Lagrange multipliers is invalid in the infinite-dimensional
case due to the presence of the unbounded system-dynamics operator. Instead, we use
the gramian form of the closed-loop covariance operator to obtain a dual problem
formulation and then proceed to derive the primitive necessary conditions by means
of a lengthy, but direct, computation (Lemma 4.7). The second crucial step involves
transforming the primitive form of the necessary conditions to the final form given in
the Main Theorem. This laborious computation was first carried out in [31], [32] and
was subsequently facilitated in [33], [36] by means of a judicious change of variables
(see (4.32), (4.33)). Finally, some concluding remarks are given in § 5.

2. Preliminaries. In this section we introduce general notation along with basic
definitions and results for use in later sections. Our principal references are [6], [50]
and [51].

Throughout this section let ¥, ¥ and ¥™ denote real separable Hilbert spaces
with norm || - || and inner product (-, -) and let B(¥, ¥’) denote the space of bounded
linear operators from ¥ into ¥'. For Le B(¥, ¥'), JL| is the norm of L, R(L) is the
range of L, #(L) is the null space of L, p(L) is the rank of L (set p(L)=00 if L does
not have finite rank), L™ is the inverse of L when L is invertible, i.e., when L has a
bounded inverse, L* is the adjoint of L and L™ & (L*)™'. Recall that ||L]| = | L*|| and
that p(L) = p(L*) [50, p. 161]). Now suppose that ¥ = ¥" so that L€ B(¥) & B(¥X, ¥).
If LL*=L*L then L is normal and if L= L* then L is selfadjoint. If L is selfadjoint
and (Lx, x)=0, xe ¥, then L is non1egative definite. Note that the selfadjointness
assumption is included in the definitic' since the Hilbert spaces are assumed real. If
L is nonnegative definite then L'/? denotes the (unique) nonnegative-definite square
root of L. Call L semisimple (resp., real semisimple, nonnegative semisimple) if there
exists invertible Se B(¥) such that SLS™' is normal (resp., selfadjoint, nonnegative
definite). This implies that SLS™" has a complete set of orthonormal eigenvectors and,
in the real-semisimple or nonnegative-semisimple cases, has real or nonnegative eigen-
values.

Recall that if Le B(X) is compact then L has at most a countable number of
eigenvalues and all*nonzero eigenvalues have finite multiplicity. Hence, for Le
B(H, ¥') compact, let {a;} be the (at most countable) sequence of ‘eigénvalues of
(LL*)'? with appropriate multiplicity and a,2a,=-:->0 [50, p. 261). Then
B (¥, H') denotes the set of trace class (or nuclear) operators, i.e., the set of compact

2 Alternatively, we could have adopted the white noise formulation of {4). The main difference between
the two white noise formalisms is that Balakrishnan works with finitely additive rather than countably
additive measures. Strictly speaking, then, even in finite dimensions Balakrishnan’s white noise is different
from the standard notion (see [6, pp. 307, 315)).
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Le B(%, X') for which ¥, a; <0 [50, p. 521]. B,(¥, ¥') is a Banach space with norm
"L"I ’“}': ag.

If T, al<o then Le BA¥, '), the set of Hilbert-Schmidt operators, which is a
Banach space with norm

k8 [zt]”

Note that L= |[Lll.= L)y, (LIE=|L*], 1L}, ={L*}|, and [L{;=[L*|,. If % =5,
then we write 3,(¥) and B(X) for B,(%, ¥) and B.(¥, ¥), respectively. Note that
if nonnegative-definite Le 3,(3) then L2 e B,(¥).

If Le B)(¥, X') and S B(H', ¥") then

(ISLi,={STiLl,
and hence SLe B,(¥, X'). Similarly, under suitable hypotheses,

LSl = HiSHILl,
and

ISLY = ISHa0 L1

LEMMA 2.1. Suppose Le B,(X) and let {A,} denote the nonzero eigenvalues of L
with appropriate multiplicity. Then {51, p. 89]

};|M|§ LI,
If L is selfadjoint then {50, p. 522]

LAl =1Ll
If L is nonnegative definite then

= A= ILls

Let L€ B,(3). Then define [50, p. 523] the trace functional tr: B,(¥)~R by
tr L&; <L¢i: ¢i)»

where the summation is independent of the choice of orthonormal basis {¢;}. The trace
satisfies tr L=tr L*, tr SL=tr LS for all S€ B(¥), tr ST=tr TS for all S, Te B,(¥X)
and tr (aT+ BS) = a(tr T)+ B(tr S) for all a, R and S, T e B,(¥).

LEMMA 2.2. Suppose Le B,(¥) and let {A,} denote the nonzero eigenvalues of L
with appropriate multiplicity. Then (51, p. 139]

trL= 2 A,‘
i
and hence (by Lemma 2.1)
fer L{s LY,
If L is nonnegative definite then
tr L= L.
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CoroLLARY 2.}, For each Se R(X) the linear functionals
LotrSL: B,(¥)+R,
LotrLS: B(X)-R
are continuous. For each L€ B,(3) the linear functionals
SotrLS: B(¥H)-»R,

SotrSL: B(X)-R
are continuous.

Although showing that a bounded linear operator is trace class is slightly more
invoived than the above characterizations of %,(¥), the following result will suffice
for our purposes (see [52, p. 96], or [52a, p. 171]).

LEMMA 2.3. Let Le B(¥) be nonnegative definite. Then

; <L'¢h ¢i)'

whether finite or infinite, is independent of the orthonormal basis {¢;}. The summation is
finite if and only if Le &B,(¥).

Many of the operators introduced in the following section have finite-dimensional
domain or range space and hence are degenerate, i.e., have finite rank. Recall that
degenerate operators are necessarily trace class. The following result, which generalizes
[53, Thm. 2.1, p. 240] in certain respects, will be fundamental in decomposing finite-rank
operators.

LEMMA 2.4. Suppose L,,- - -, L, € B(#, #') have finite rank. Then there exists a
finite-dimensional subspace # < ¥ such that L#*=0, i=1,-- -, r. Furthermore, if
X=X then M can be chosen such that LM< M, i=1,---,r

Proof. It suffices to consider the case r=1. Writing L for L,, note that since
p(L*)<oo, N(LY* =R(L*) [50, p. 155] and N (L) is closed, the first statement holds
with M =AN(L)*. When ¥ =% set M=N(L)*+R(L) and note that #L'=
N(L)NR(L)Y' < N(L)and LU<R(L)= M. 0O

The following generalization of Sylvester's inequality [54, p. 66] will be used
repeatedly in handling finite-rank operators.

LEMMA 2.5. Let Le B(¥, ') and S€ B(¥H', X"). Then

(2.1) p(SL)=min {p(S), p(L)}.
If dim X' = v <0, then
(22) p(S)+p(L)~v=p(SL).

Proof. If either S or L does not have finite rank then (2.1) is immediate. If both
S and L have finite rank then the standard arguments [54)] used to prove the finite-
dimensional version of (2.1) remain valid. To prove (2.2), note that Lemma 2.4 implies
that there exist orthonormal bases for ¥ and X' with respect to which L has the matrix
representation [L 0], where Ler*=. Similarly, there exist orthonormal bases for &
and ¥~ with respect to which S has the matrix representation [ﬁ] where §eR"™,
Since the two cited bases for " may be different, let orthogonal U e R"™" be the matrix
representation (with respect to either basis for &”) for the change in orthonormal basis
{6, p. 100]. Hence SL has the matrix representation [ %] and (2.2) follows from
the known result {54, p. 66]. O

As in the proof of Lemma 2.5, we shall utilize the infinite-matrix representation
of an operator with respect to an orthonormal basis. All matrix representations given
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here will consist of real entries since the Hilbert spaces involved are real. When the
orthonormal bases are specified and no confusion can arise, we shall not differentiate
between an operator and its matrix representation. We shall use the infinite identity
matrix [, interchangeably with the identity Iy on .

When dealing with finite-dimensional Euclidean spaces the notation and ter-
minology introduced above will be utilized with only minor changes. For example,
bounded linear operators will be represented by matrices whose elements are deter-
mined according to fixed orthonormal bases and hence we identify R™™" = 8(R", R"™).
Note that if Le B(R", ¥) and Se B(X,R™) then SL is an m X n matrix which is
independent of any particular orthonormal basis for . The transposes of xeR" 2R"™!
and M eR™*" are denoted by x" and M7 and M~ " & (M 7)™, Let I, denote the n xn
identity matrix.

To specialize some of the above operator terminology to matrices, et M eR"™".
We shall say M is nonnegative (resp., positive) diagonal if M is diagonal with
nonnegative (resp., positive) diagonal elements. M is nonnegative (resp., positive)
definite if M is symmetric and x "Mx = 0 (resp., x"Mx > 0), xeR". Recall that M is
symmetric (resp., nonnegative definite, positive definite) if and only if there exists
orthogonal U € R"*" such that UMU" is diagonal (resp., nonnegative diagonal, positive
diagonal). M'is semisimple {55, p. 13], or nondefective [56, p. 375}, if M has n linearly
independent eigenvectors, i.e., M has a diagonal Jordan canonical form over the
complex field. M is real (resp., nonnegative, positive) semisimple if M is semisimple
with real (resp., nonnegative, positive) eigenvalues. Note that M is real (resp., nonnega-
tive, positive) semisimple if and only if there exists invertible S € R"*" such that SMS™'
is diagonal (resp., nonnegative diagonal, positive diagonal). Alternatively, M is real
(resp., nonnegative, positive) semisimple if and only if there exists invertible SeR"*"
such that SMS™' is symmetric (resp., nonnegative definite, positive definite).

LEMMA 2.6. The product of two nonnegative- (resp., positive-) definite matrices is
nonnegative (resp., positive) semisimple.

Proof. If S, LeR"™" are both nonnegative (resp., positive) definite then b) [55,
Thm. 6.2.5, p. 123] there exists invertible ¢ € R"*" such that Dg& ¢~ 'S¢~ and
D & ¢rL¢ are nonnegative (resp., positive) diagonal. Hence, SL=¢DsD, ¢ is
nonnegative (resp., positive) semisimple, as desired. Alternatively, if either S or L is
positive definite, then the result follows from SL= L~"3(L"2SL"?)L"'?if L is positive
definite or SL=S"*(§2LS"?)§"V? if § is positive definite. 0

3. Problem statement snd the Main Theorem. We consider the following steady-
state fixed-order dynamic-compensation problem. Given the dynamical system on
{0, )

(3.1) x(t) = Ax(t)+ Bu()+ H,w(1),
(3.2) y(1)=Cx()+ Hw(t),

design a finite-dimensional fixed-order dynamic compensator
(3.3) X(t) = A.xc(1)+ B.y(1),

(34) u(t)=C.x.(1)

which minimizes the steady-state performance criterion

(3.5) J(A, B, C.)&lim E[(R.x(#), x(1))+u(1) "Ryu(1)].
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The following data are assumed. The state x(7) is an element of a real separable
Hilbert space ¥ and the state differential equation is interpreted in the weak sense
(see, e.g., [6, pp. 229, 317]). The closed, densely defined operator A: Z(A)c ¥+ X
generates a strongly continuous semigroup e, +=0. The control u(t)eR™, Be
#B(R™, ¥) and the operator R, € B,(¥) and the matrix R,€R™™™ are nonnegative
definite and positive definite, respectively. w(-) is a zero-mean Gaussian “standard
white noise process™ in L,((0, ), ') (see {6, p. 314]), where ¥ is a real separable
Hilbert space, H, € B,(¥', ¥), H.c B(¥',R') and “E” denotes expectation. We assume
that H,H$ =0, i.e., the disturbance and measurement noises are independent,’ and
that V,& H,H*eR' is positive definite, i.c., all measurements are noisy. Note that
V& H,H} € 3,(¥) is nonnegative definite and trace class.* The initial state x(0) is
Gaussian and independent of w(-). The observation y(1)eR' and C € B(¥, R'). The
dimension of the compensator state x.(1) is of fixed, finite order n. = dim ¥ and the
optimization is performed over A.eR"™", B.eR"*' and C.eR™""™.

To handle the closed-loop system (3. l) (3.4), we introduce the augmented state
space #& @R which is a real separable Hilbert space with inner product (x,, X,) |
(x, x)+xlix,, X &(x,x;). An operator Le B( %) has a “decomposition” into
operators L, € B(¥X), L€ BR"™, ¥X), L, € B(X,R™) and L€ R™ ™™ in the sense that
for £4 (x, x.)e %, L% = (L,x+ Ly,x5 Ly,x+ L,x,), or, in “block” form,

L le]
L= [Ln L

(LA = NLA+ N Lagll+  Laaff + [ Lol

[ [Lr L:.]_
Ly L
We can similarly construct unbounded operators in . Hence, define the closed-

loop dynamics operator A: 2(A)c 7(’-»3? on the dense domain @(A)4& P(A) xR™
by Ax = (Ax+ BCx, B.Cx+ Ax.). Since A can be represented by

i-[ A BC _[A o]+[ 0 BCC]
“LBc Al Lo o) LBC A
and since the closed-loop operator

A0 - -
[0 0].@(,4)-»7(’

For later use note that

and

generates the strongly continuous semigroup

e 0]
0
[0 g e

it follows from [50, Thm., p. 497] that A is also closed and generates a strongly
continuous semigroup ete ®(%), t 2 0. To guarantee that J is finite and independent

* This assumption and its anslogue, the lack of a cross-weighting term x(1)7R,,u(1) in (3.5), are for
convenience only. See § 5.

4 We must require that R, and V, be nuclear since covariance operators in the white noise formulation
of [6] are not necessarily trace class as they are in the formulation of {4].
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of initial conditions we restrict our attention to the set of admissible stabilizing
compensators

A&{(A, B, C.): e*is exponentially stable}.
Hence if (A, B, C.)€ o then there exist a >0 and 8 >0 such that
(3.6) le*llsae™®, tzo0.

Since the value of J is independent of the internal realization of the compensator, we
can further restrict our attention to

A, & {(A, B, C.)e o (A, B.) is controllable and (C,, A,) is observable}.

The following lemma is required for the statement of the Main Theorem.

LEMMA 3.1. Suppose Q P e B(%) have finite rank and are nonnegative definite.
Then QP is nonnegative semisimple. Furthermore, if p(QP)— n. then there exist G,
I'e B(HK,R") and positive-semisimple M € R" " such that

3.7 QP= G*"MT,
(3.8) rg*=1,

Proof. By Lemma 2.4 there exists a finite-dimensional subspace M < ¥ such that
OMc M, OM*=0, PH< M and P.ll =0. Hence there exists an orthonormal basis
for ¥ with respect to which Q and P have the infinite-matrix representations

« [d o s [P o
Q‘[o 0]’ P'[o 0]’

where Q,, P,eR"™" are nonnegative definite and r& dim 4. Since by Lemma 2.6 there
exists invertible ¥ e R"™" such that A=V~ ‘Q.P,\P is nonnegative diagonal, we have

an ¥ o0[A off¥™* o

QP‘[o Im][o 0][ 0 Im]'
which shows that éﬁ is nonnegative semisimple. If, furthermore, p(éf’) = n. then it
is clear that ¥ can be chosen (i.e., modified by an orthogonal matrix) so that

- A0
A’[o o]’

where AeR"™™" is positive diagonal. Hence,

o-fs T ool 2]

which shows that (3.7) and (3.8) are satisfied with

T vt o0
G=[[s" 0] 0][\;: ;’ ] M=S"'AS,T={[s"' 0] o][ | ]
for all mvemble SeR™ . 0O
We shall refer to G,I'e B(H,R") and positive-semisimple M €R" ™" satisfying
(3.7) and (3.8) as a (G, M, I')-factorization of QP. For convenience in stating the Main
Theorem define

T4BR;'B*, TAC'V;'C
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MAIN THEOREM. Suppose (A, B, C.)e A, solves the steady- state fixed-order
dynamic-compensation problem. Then there exist nonnegative-definite Q, P, O, P ¢ ®B,(%)
such that A, B. and C, are given by

(3.9) A =T(A-Qi-2P)G*,
(3.10) B.=TQC*V:',
(3.11) C.=—-R;'B*PG*,

Jor some (G, M, T)-factorization of Oﬁ', and such that, with & G*T, the following
conditions are satisfied:

(3.12a,b) Q: D(A*)»> 2(A), P: 2(A)> Z(A*),
(3.13a,b) Q: %->2(A), P:¥->2(A%),

(3.14a,b, ¢)* p(Q)=p(P)=p(QP)=n,

(3.15) 0=(A-mQZ)Q+Q(A~7Q%)*+ V,+ QI Qr*,
(3.16) 0=(A-XPr)*P+P(A-3Pr)+R,+1*PZPr,
(3.17) 0=[(A-2P)Q+Q(A-XP)*+Q3Q]*,
(3.18) 0=[(A-Q%)*P+P(A-Q%)+ PEP]r.

The content of the Main Theorem is clearly a set of necessary conditions which
characterize the optimal steady-state fixed-order dynamic compensator when it exists.
These necessary conditions consist of a system of four operator equations including
a pair of modified Riccati equations (3.15) and (3.16) and 2 pair of modified Lyapunov
equations (3.17) and (3.18). The salient feature of these four equations is the coupling
by the operator 7€ B(¥) which, because of (3.8), is idempotent, i.e., 7> = =. In general,
7 is an oblique projection and not an orthogonal projection since there is no requirement
that r be selfadjoint. Additional features of the Main Theorem will be discussed in
the remainder of this section. For convenience, let G, M, T, r, Q, P, é and P be as
given by the Main Theorem and define A& diag(A,, - -, A, ), where A\ 2,22
A, >0 are the cigenvalues of M.

We begin by noting that if x, is replaced by Sx, where S€eR™ ™™ is invertible,
then an “equivalent” compensator is obtained with (A, B, C.) replaced by
(SAS™',SB,C.S™).

ProposiTioNn 3.1. Let (A, B,C.)ed,. If SeR™™™ is invertible then
(SAS™',SB,CS')e A, and

(3.19) J(A, B, C,)=J(SAS™",SB,CS™").

Proof. Although the result is obvious from system-theoretic arguments, we shall
prove it analytically by utilizing elements of the development in § 4. Define

- I 0 -
A <
S [‘0 S] € B(¥)

and note that replacmg (A, B, C,) by (SA§" SB_, C.S™') is equivalent to replacing
A, V and R by SAS™', §VS* and §"*RS™', respectively. If a, 8 > 0 satisfy (3.6) then
a straightforward apphcanon of the Hille- Yosida theorem (57, pp. 153-5] shows that

3 (:u.u) refers to p(Q) = n_ etc.
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the strongly continuous semigroup generated by SAS™' satisfies lles'“ "=
1SS lla e~®, which proves the first assemon Since S e“S’ rZ 0 is also a strongly
continuous semigroup with generator SAS', it follows that Se A§1 = 3457 Hence

I eSAS“l(S"'/S'#) e(s‘f")'l dt = S'ég*
o

and (3.19) follows from tr QR =tr (§Q.§")(§"li§"). D

In view of Propasition 3.1 one would expect the Main Theorem to apply also to
(SAS7', SB, C.S™"). Indeed, it may be noted that no claim was made as to the
uniqueness of the (G, M, I')-factorization of QP used to determine A, B, and C. in
(3.9)-(3.11). These observations are reconciled by the following result which shows
that a transformation of the compensator state basis corresponds to the alternative
factonzauon QP (S"TG)T(SMS™')(ST) and, moreover, that all (G, M, I')-factoriz-
ations of QP are related by a nonsingular transformation. Note that 7 remains invariant
over the class of factorizations.

PrOPOSITION 3.2. IfS € R"™": is invertible then G4 S™7G,T'2 ST and M & SMS™'
satisfy

3.7 6P = G*MT,
3.8) FG*=

Conversely, if G, ' e B(¥,R"™) and invertible M e R"*": satisfy (3.7)" and (3.8)', then
there exists invertible S € R"™" such that G=S"7G,T'= ST and M = SMS™".

Proof. The first part of the proposition is immediate. The second part follows by
taking S& M 'TG*M™', noting S'=MIG*M™' and using the identities
fG*MIG*=M and MIrG*=rG*mM. O

The next result shows that there exists a similarity transformation which simul-
taneously diagonalizes QP and 7.

PROPOSITION 3.3. There exists invertible ® € B(¥) such that

a . afAe 0], . 5 Ap 0
= i * =d*
(3.20a,b) 0=¢ [0 0]¢ , P ¢[0 0]¢,
as o [A o] [1 o]
(3.21a,b) QP=0 [0 0l® r=07 L e,

where Ag, ApeR" ™" are positive diagonal and AsAps= A. Consequently,
(3.22a,b) 0=10, P=Pr

Proof. Proceeding as in the proof of Lemma 3.1, choose an orthonormal basis for
¥ with respect to which

’

a_[0 0] -_[f’. o]
Q'[oo and P={4 o)
where O,, P,eR " are nonnegative definite. By [55, Thm. 6.2.5, p. 123}, there exists

invertible ¥ eR™™ such that A¢2W¥Q,¥" and Ap=V¥" TP,\I’ ! are nonnegative
diagonal. Because of (3.14), it is clear that ¥ can be chosen so that

- [As © . [As 0
A°=[oo o] and A“[o‘b o]’
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where Ag, ApeR" ™" are positive diagonal. Thus (3.20) holds with
ob [“’ 0 ]
0 I,

as | AgAp O

QP=9 [ 0 O]d,'
Now define G =[], 0]®™*, M =AsAs and T=[1, 0] so that (3.7)’ and (3.8)" are
satisfied. By the second part of Proposition 3.2 there exists invertible SeR" ™" such
that G=S"G, M =5""MS and '= §™'T". Since M and M have the same eigenvalues,
M = A (modulo an ordering of the diagonal elements) and thus (3.21a) holds. Finally,
(3.21b) follows from

From (3.20) it follows that

= I, 0
=G*T=G*T= d>“[ " ]Q.
T o 0 u]

_Remark 3.1. Proposition 3.3 shows that A,, - -, A, _are the positive eigenvalues
of QP.

Remark 3.2. The simultaneous diagonalization in (3.20) has been effected by a
contragredient transformation [55), [58]). For applications of this type of transformation
to model reduction and realization problems see [12], [59]-[61]. Simultaneous
diagonalization of operators is discussed in [53, p. 181].

The following result validates the precise handling of the unbounded operator A
in (3.9), (3.17) and (3.18).

ProposiTiON 3.4. The following relations hold:

(3.23a,b,¢) p(G)=p(D)=p(1)=n,
(3.24a,b) . > 3B(A), ™. X > D(A"),
(3.25a,b) G*:R" > 2Z(A), I*:R" > P(A*).

Proof. From (3.8) and (2.1) it follows that n. = p(I'G*) = min {p(T’), p(G*)}. Since
p(D)=n, p(G)=p(G*) and p(G)=n, (3.23a) and (3.23b) hold. To show (3.23c)
either note (3.21b) or use (3.14a) and (3.22) to obtain

n.=p(Q)=p(rQ) = p(r) = p(G*I) = p(T) = n.

To prove (3.24a) note that (3.22a) implies R(Q) < R(r) and thus p(Q) = p(r) implies
Q(é) = R(r), and similarly for (3.24b). Finally, (3.25) follows from (3.23), (3.24), the
definition 7= G*T and the fact that +*=0*G. O

Since the domain of A may not be all of %, expressions involving A require special
interpretation. First note that because of the range condition (3.252), the expression
(3.9) indeed represents an n, X n, matrix (see, e.g., [6, p. 80]). Similarly, because of
(3.25b), AT is given by

(3.26) Al=G(A*-2Q-PI)I*

With regard to (3.15), note that because of (3.12a), the right-hand side of (3.15) is a
linear operator with domain @(A*). Since 02 —rQEQ-QEQr*+ V,+rQEQr* is
continuous on D(A*), AQ+ QA" has a continuous extension on ¥ given precisely by
—~©. Similar remarks apply to (3.16). Analogous domain conditions were obtained in
[S] for a deterministic infinite-dimensional linear-quadratic control problem with




134 D. S. BERNSTEIN AND D. C. HYLAND

full-state feedback. Finally, because of (3.24) the right-hand sides of (3.17) and (3.18)
denote bounded linear operators on all of .
It is useful to present an alternative form of the optimal projection equations
(3.15)-(3.18). For convenience define the notation
Ty A Ix -T.

ProposITION 3.5. Equations (3.15)-(3.18) are equivalent, respectively, to

(3.27) 0=AQ+QA*+V,-QEQ+7,QEQr*,

(3.28) 0=A*P+PA+R,- P3P+ t*P3Pr,,

(3.29) 0=(A-32P)Q+O(A-ZP)*+QSQ~1,Q3Qr*,
(3.30) 0=(A-Q%)*P+P(A-QS)+PIP~7*PIPr,.

Proof. The equivalence of (3 27) and (3.28) to (3.15) and (3.16) is immediate.
Using (3.22a) in the form Q Q‘r we obtain (3.17) =(3.29)7*. Conversely, from
(3.22a) and [(A- ZP)Q]" Q(A EP)* (see, e.g., [6, p. 80]) it follows that (3.29) =
(3.17) +(3.17)* — 7(3.17). Similarly, (3.18) and (3.30) are equivalent. 0O

The form of the optimal projection equations (3.27)~(3.30) helps demonstrate the
relationship between the Main Theorem and the classical LQG result when dim 3!’ n<
0. In this case we need only note that the (G, M,T)- factorization of QP in the
“full-order” case n.,=n is given by G=I=], and M= QP Since 7= 1, and thus
7, =0,(3.27) and (3.28) reduce to the standard observer and regulator Riccati equations
and (3.9)-(3.11) yield the usual LQG expressions. Furthermore, note that in the
full-order case

(3.31) A.=A+BC.~B.C

and (3.29) and (3.31) can be written as

(3.32) 0=(A.+B.C)Q+Q(A.+B.C) +B.V,B!,
(3.33) 0=(A.-BC,)"P+ P(A.- BC,)+ CTR,C.

Since, as is well known, the stability of A corresponds to the stability of A+ BC, =
A.+B.C and A-B.C = A. - BC, it follows from standard results (e.g., [62, pp. 48,
277)) that the positive-definiteness conditions (3.14a, b) are equivalent to the assump-
tion that (A, B, C.) is controllable and observable.

To obtain a geometric intepretation of the optimal projection we introduce the
quasi-full-state estimate

(1R G*x.(NeX

so that 7£(¢) = £(t) and x.(t) =T%(1). Now, the closed-loop system (3.1)-(3.4) can be
written as

(3.34) %(1) = Ax(t) — BC.72(1)+ H,w(1),
(3.35) #(t)=1(A+ BC,~ B.C)r%(t)+ tB.(Cx(1)+ Hyw(1)),

where (3.35) is interpreted in the sense of (3.34) since £(f) € ¥ and where
B.AQc*v;y!, C.4-R;'B*P.

It can thus be seen that the geometric structure of the quasi-full-order compensator is
entirely dictated by the projection 7. In particular, control inputs 7%(r) determined by
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(3.35) are contained in R(r) and sensor inputs -rﬁ,y(r) are annihilated unless they are
contained in [¥(7)]* = R(+*). Consequently, ®(7) and R(7*) are the control and
observation subspaces, respectively, of the compensator. Since 7 is not necessarily an
orthogonal projection, these (finite-dimensional) subspaces may be different.

From the form of (3.35) it is tempting to suggest that the optimal fixed-order
dynamic compensator can be obtained by projecting the full-order (infinite-
dimensional) LQG compensator. However, this is generally impossible for the following
simple reason. Although the expressions for A, B. and C. in (3.9)-(3.11) have the
Jorm of a projection of the full-order LQG compensator, the operators Q and P in
(3.9)-(3.11) are not the solutions of the usual LQG Riccati equations but instead must
be obtained by simultaneously solving all four coupled equations (3.15)-(3.18). This
observation reinforces the statement made in § 1 that the optimal fixed-order dynamic
compensator cannot in general be obtained by LQG followed by closed-loop controller
reduction as in [14] and [15].

We now gnve an explicit characterization of the optimal projection in terms of Q
and P, Since QP has finite rank, its Drazin inverse (QP)D exlsts (see [63, Thm. 6, p.
108]) and, since (QP)*= G*M 21' and hence p(QP)*= p((QP), the “index™ of QP (see
[63],[64])is 1. In this case the Drazin inverse is traditionally called the group inverse
and is denoted by (QP) (see, e.g., [64, p. 124] or [65]).

PrOPOSITION 3.6. The optimal projection = is given by

(3.36) r=QP(QP)".

Proof. 1t is casy to verify that the conditions characterizing the Drazm mverse
[63] for the case that QP has index 1 are satisfied by G*M ~'I'. Hence (OP)* = G*M™'T
and (3.8) implies (3.36). O .

We now give an alternative characterization of the optimal projection by introduc-
ing the following notation from [51, p. 73]. For ¢, ¢ € ¥ define the operator ¢ @y €
B(X) by

(¢@Y)x&(x, d)y, xeX,

and note that p(¢® ¢) =1 if ¢ and ¢ are both nonzero and (¢ ® ¢ )* = ¢ ® ¢. Using
this notation, (3.21a) can be written as

(3.37) o0PO =¥ AE®E,

i=1
where {£}52, is an orthonormal basis for #. In terms of the Riesz bases (see e.g., [52,
p- 309])

¢i4¢‘§h ¢i4‘¢_lfh i=1,2,--,

(3.37) is equivalent to
(3.38) éﬁ= 2 A, By,
=1

which can be regarded as a specialized spectral decomposition of a semisimple operator.
We emphasize that, in contrast to the singular value decomposition for compact
nonnormal operators (see, e.g., [50, p. 261]), the A, in (3.38) are eigenvalues of QP
(see Remark 3.1), not singular values. Moreover, although {¢,}7~, and {,} 7., are bases
for ¥, they are not necessarily orthogonal. They are, however, biorthonormal, i.e.,
(¢, ¥;) = 8,, and hence ¢, ® ¢, is a rank-one projection and (¢, ® P, ) (&;® ;) =0, i # .
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Since r is a rank-n, projection, it is not surprising that r is given precisely by
n

(3.39) . =1 60

The following result summarizes the above observations.

ProPOSITION 3.7. There exist biorthonormal linearly independent sets {¢,}7<, <
D(A) and {¢;}is,c 9(A‘) such that (3.38) and (3.39) hold. Furthermore, if the
(G, M, T')-factorization of QP is chosen such that M = A, then, for all x € ¥,

Gx = ((xy 'l’l)v Y <xy .I’n‘))ra
rx = ((x’ ¢l)1 Y (x’ ¢n,>)r'
Remark 3.3. Note that PQ and 7* are given by
ﬁé" i‘. Ay @, ™= ‘nil ¢ ®9,

iml

and, for all y&(y,, -, y, )T €R™, G* and I'* satisfy
G*y= ‘il Yiba My= :‘ Y.

4. Proof of the Main Theorem. We state and prove a series of lemmas which allow
us to compute the Frechet derivatives of J with respect to A, B, and C. Requiring
that these derivatives vanish leads to the necessary conditions in their “primitive”
form. A transformation of variables then leads to the form of the necessary conditions
(3.9)-(3.18).

Let “u-im™ denote the uniform limit (i.e., limit in operator norm) for bounded
linear operators [50, p. 150] and, for strongly continuous S(t) € B(¥X), t = 0, interpret
the strong integral I’ S(r) dt according to {2 S(1)zdt, z€ % [50, p. 152]. Also recall
the standard fact (6, p. 186] that (e*)*= e" and similarly for A. Throughout this
section let (A, B, C.) € &, and let a, B> 0 satisfy (3.6).

To begin, note that the closed-loop system (3.1)-(3.4) can be written as

(4.1) " %(1) = AX(t) + Hw(1),

where

- H
A ! d !
H [B‘Hz]eﬁz(‘?t’ @OR).

For convenience define the nonnegative-definite operator

. em v,
Va H"=[0' B‘?B]em(%)
2

In terms of the augmented state X(¢), the performance criterion (3.5) becomes

4.2) J(Aq B, C.) =lim E(RE(1), %(1),
where the nonnegative-definite operator R is defined by

.. [R 0 -
Ra.[ ! ]eQB(SE’).
0 CIR,C. !
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To write (4.2) in terms of the covariance of X(r), recall (6, p. 308] that the
covariance “E[(§—E£)(§—E€£)*]” of a Hilbert-space-valued weak random variable ¢
is defined to be the nonnegative-definite operator § which satisfies

(Sy, 2) =E(§ ~E§ yNE-EE 2)
for all y, z in the Hilbert space. Hence define [6, p. 317]
Q1) & E[(X(1) —EX(0))(£(1) —EX(1))*].

Lemma 4.1. Q£ u-lim,.. Q(1) exists and is given by

(4.3) Q= I A ver ar.
0

Furthermore,

(4.9) J(A, B, C.)=tr QR

Proof. First compute (as in {6, p. 317])
(Q(1)7, 5 = E(Z(1) — eAEX(0), F)(E(1) — e EX(0), 5)

=E<I' A i(s) ds, J7><J' A (o) do, E>

] o
+(Q(0) e¥'5, e1'5)

=E I' J" (‘:’(3), ﬁ# e,“(l—;)}.;)<“.’(a), I-.I* eA..(‘-a)z.) i do
0 Jo
+(eA'Q(0) 415, 9)

= j (€A1 V A5 3y ds+ (%' 3(0) €715, 3),
0

which shows that @(r) is given by

o) = e"Q.(O) e"'+I e** Ve ds,

Q0

Clearly, (4.3) makes sense as a strong integral since

o X
101s j leA e drs o] ¥ I 28 dy <o,
[

To demonstrate uniform convergence it need only be noted that

10— Qi = sup @~ QN7

o
I e& ",el‘:ids_eAiQ'(o) el‘li

= sup
Will=1

= [T1eR TRy dse et 60 5

=1a?| V|~ e '+ || G(0)]| €72,
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Next, let {¢,}72, be an orthonormal basis for % and use Parseval's equality to obtain
J(A, B, C.)=lim E|RV2 (0|2 = limE ¥ (R'2%(1), $:)*.
- 0 -gx im]

Since
(& T (R0, ), 120,
i)

is nonnegative for each n and is increasing in n for each t with limit (RX(1), %(1)),
monotone convergence permits expectation-limit interchange. Hence using Ex(f) =
e*'EX(0) we have

J(A, B, C)=lim T EGE(1), RV*¢,7
10 =y

=tim ¥ {G()R¢, R2¢)+(VEZ(0), R2¢]
12w
=lim {tr [RY23(1)RV21+ | R e*E5(0)[3

which by Corollary 2.1 yields (4.4). O .
We shall also require the *“*dual” of Q given by

(4.5) P= I eA" 'R e? d1.
[+]

Since V and R are nonnegative definite it is readily seen that Q and P are also
nonnegative definite.

LeMMA 4.2 é, Pe B,(%). .

Proof. It suffices to consider (o] only since the situation for P is exactly analogous.
Since Q is nonnegative definite, Lemma 2.3 can be used. Letting {¢;}i=, be an
orthonormal basis for ?.(; we have

tr Q.= _E (Q.¢iy )= E <I ej".’ei.’¢i di, ¢:>

iw] i=1 0

@ g ..

=lim I ¥ (Ver o, e* 0, dt.
nex 0 i=1

Let f,(1) denote the above integrand. Since Vis nonnegative definite, {f,(-)} is a

monotonically increasing sequence of nonnegative functions such that f,(1)-

treA' Ve ', 1=0. Hence, by monotone convergence and Lemma 2.2,

trQ= J' tr[eX VeA ") dt
o

(- <] (- <]
= J fe® VeA™ |, di=a?| V|, j e di < o, 0
0

0

LeMMA 4.3. With § and P given by (4.3) and (4.5) it follows that

(4.6) tr OR =tr VP.
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Proof. For any orthonormal basis {¢;};=, of  we have

wGR=tr Ro=3 <§ J' AV eA g dr ¢5>
0

i=1

= lim I i (ReMVeA g, ¢.) dt.

n--x 0 i=1

Letting £,(t) denote the above integrand it follows that f,(t) »tr R A VeA™ 120, and
FACIED [e* Ve o, Rpl= a?|| V) e=2# T IRall.
If {&:}i=, is chosen to be the set of orthonormal eigenvectors of R then Lemma 2.1

implies Y7, |Re:|| = R|l, and thus |£,(1)| is bounded on [0,0) by an integrable
function. Hence by dominated convergence,

tr OR =J tr[Re*VeA ") d =J tr[ef " ReAV]de= j Y (V. e 'R e*") dt.
(1] ] 0 i=l

And again using dominated convergence,

© «© ce o~ X ©
trQR=Y I (Vo,e* "ReMp)ydi= 3 <v¢,,I AR eArg, dt>—tr VB. O
i=) Jo i=]

The next result is important in that it allows us to treat Q and P as solutions of
dual algebraic Lyapunov equations. For a similar result involving groups rather than
semigroups see [50, pp. 555-557].

LeEmMA 4.4. Q is given by (4.3) if and only if Q € B(H) satisfies

(4.7) Q: 9(A*)->9(A),
(4.8) 0=A0+0QA*+V,

where (4.8) holds in the sense discussed in § 3. Furthermore, P is given by (4.5) if and
only if Pe B(X) satisfies

(4.9) P: 2(A)» 2(A%),
(4.10) 0=A*P+PA+R.

Proof. We consider é only. To prove necessity let ¢'>0. Then for all t€[0, 1)
and X€ D(A*) we can write
AGeiri= J-m AUV Az ds
]

x
= I reAoVeh'w A3 do.
4
Hence,

o

d .4 .y o Ay & » LY - - -~ . -
(4.11) Ee"Qe“ 'S = -I eAo VA (A0 02 4y — AV AR,
1

which shows that e"Q A is strongly dlﬂerentlable with respect to ¢ for all te[0, ¢').
In particular, setting t =0 it follows that Oe‘ e D(A) for all Fe D(A*) (see, e.g.,
{6, p. 173] or [50, p. 485]). Performing the differentiation on the left-hand side of
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(4.11) and setting 1 =0 yields
(4.12) AQetri= 'I e VeA o A A5 do - Ver' 'R

Now fix € D(A*). Then for {1}, ,>0, t,» 0, we have

Oer'ie D(A), i=1,2,3, ",

Q‘e“"f >0 Q.x.‘

Now consider the sequence {AQ et 3 i Letting 1’ = ¢; in (4.12) and using dommated
convergence to interchange limit and integration (A"x is a fixed element of %), it
follows that

© 0
(4.13) 3112 fié Az = —I A VeA  A*i do - Vx. .

o

Since A is closed, Q'i € D(A). This proves (4.7). Also, since A is closed we have

which with (4.13) implies

AQi=~0A*x- Vi,
and hence
(AG+GA*+V)7=0, FecD(A*),
as desired.

To prove sufficiency let Xe D(A). Then e*"'5 e D(A*), 120, and hence

dll

¢ Qe 'z =eA(AQ + QA*) Az

Thus

e"ée“'f-éf=j X (A0 + QA*) X0 ids, Fe D(AY).

[
Extending AQ + QA* to all of ¥ we obtain

T
e"ée“'f-éir.-J eMVerizds, iek

0

Letting t -+ o yields (4.3). O
We now introduce some notation which will prove to be most convenient in the
following results. For (A., B., C.) € R**™ xR"*' xR™*" define

5, &A.-A, 8, 4B.-B, §5.4C.-
and
§(8as 8.0 Bl A MIBa N+ 1188, + i Bc |-
Furthermore, let A’, V' and R’ denote A, V and R with (A, B, C.) replaced by
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(AL, B,, C’.) and define
SiAA-A= :.s,:c ‘;‘if'],
Sod V- V= _8 B.V,55 + .s.)('),BZ + 5,,‘v,5;,]’
544 R-R= ig CIR,8c + 52,:2Ce + 5€‘R25c,].

We shall also write @', P’ for é, P as given by (4.3) and (4.5) with A, V, R replaced
by A’, V', R’ and define

540'-Q  5HAP-P

Lemma 4.5. o is open.
Proof. Let (A, B, C.) €. be arbitrary and consider the open set

(4.14) NA{(AL, B, CeR™™ ™ xR™™ xR™™": ||(84, 85, 5c,))| < B/2ay},

where y & max {1, || B]|, |C|)}. Then, since A'= A+ 8z and 55€ B(F) it follows from
Theorem 2.1, p. 497 of [50], that for all (A., B., C.)e N and t=0,

NS a e Brottahig o omBY/2,

Hence, N c o, as desired. O
LEMMA 4.6. There exists ¢ > 0 such that

(4.15) 85l = cll(8a,, 85, &),
(4.16) |88l = cll(8a,, 85, 8],

Jor all (AL, B;, C.)€ N, where N c o is the open neighborhood of (A, B., C.) defined
by (4.14),

Proof. We consider (4.15) only. Since [[e*"[|s ae 72, t20, (AL, B, C')e N, it
follows that

85l = ‘( e Veh™ — A VA dr
[
= [ UeX WV I eX™ = X + e Y Usoll e + X" = X)) Vi R} di
(4.17) ﬁa(ll‘.’ll"'"&vll)J fectseemar— edr) =82 gy
(1]

«©
+a2“8V“ I e~ 38/2 dt+al| “,“ Io “e(‘i*""'—e“'“ e~B/2 4y
°

- © 2a?
=a(@ P+ hel) [l o= Ao i 22 5y
o
From [50, p. 497}, it follows that the perturbed semigroup e‘A**4" has an expansion

A e AL ¥ U, 120,
{m]
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where U(t)e Q(??), t 20, satisfy the estimates
fUD] =) 8a] e/ it
Hence, for all (A., B., C.)e N,

(4.18) le 4= %= T (U5 ae ™[~ 1),
i
From (4.17), (4.18) and the relations |6zl = y||(84, 8., 6¢.)|| <B/2a and

o« —1g¢ [+ 4
J [eal®ab 1) 7382 gy <'3—Bz2 (84, 85, S
°

it follows that
2a’y

l6all =357 @UVI+1801(8a, 85, 51

2a? 2
+§ (2| B.V;| || 86 1t + | Vali 185,117,

which yields (5.15). _D
Since Q, P& B(¥) we can write

= | Q Qu] = [Px sz]
= . B= :
Q [ t 0 Py P
where Q, € B(X), Q€ B(R™, ¥), Q,eR"™™" and similarly for P,, P,, and P,. Note
that Q,, Q,, P, and P, are nonnegative definite. Also, define the notation

s _[Z zu]
FQ [sz z ]

Z,&P,Q,+P,,Q%, Z,2 P,Q,,+ P,,Q,,
Z,4 PHQ,+ P,QY,  Z,4 PLQu:+ P:Q,,
and, for (A, B., Cl)e oA, let
8,(8a, 88, 8c, ) R J(AL, B, C)-J(A, B, C.).
LeMMA 4.7. Let (AL, B.,C.)e A. Then

where

(4.19) 8,(84,85,8c)=%(84, 85, 8c.)+0(|(8a, 85, 8c))),

where

(4.20) © (84, 85, 8c)R21r[2,8, )+2tr [(V,BI P+ CZ%)55 ]
+2tr[Q,CITR,+Z%B)5.]

and

(4.21) Km  [|(84, 85, 8c) 7 0((l(84,, 85, 8c)) =0.

(8489 .8, )+0
Proof. Combining (4.8) and (4.10) with (4.6), J can be written as
J(A, B, C.)=t[{QR+PV]+itr [Q cl (A*P+ PA)+ P cl (AQ+ GA™)],
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and likewise for (AL_, B, C.), where “‘cI'" denotes closure (i.c., extension) of a bounded
operator to all of ¥. Now using the identity

tr[é'ﬁ'-#l-."f"]-tr [@i + ﬁf’] =tr [Q.ag + }589]+tr[80ﬁ’+ 5 V')
Wwe can compute
8,(8a, 85, 8c,) =tr[Q8a+ P8y]+1tr [Q cl (A*(P+8p)+(P+55)A")]

+itr[8gcl (A*P'+ P'A")]
+itr[Pcl (A'(Q+85)+(0+585)A™))
+itr[8pcl (AQ'+Q'A™))
~3tr[Qcl (A*P+ PA)+ P cl (AQ+ 0A*))
+tr[8sR'+ 65 V'],

Using A=A+ 84 and combining the second, fourth and sixth terms yields

8,(8a,88,.8c.)=A+Q,

where
Adtr[Qdg+ Poy)+itr [Q(8% P+ Po;)+ P(5:0+ Q5%)]
=tr[Q85+ P5;)+21r [6:0P]
and
Q&L [Gcl(A*5p+85A")+ Pcl (A'5g+865A™)]
+itr[85cl (A*P'+ P A)+85cl (A'Q'+ Q'A*)]+1tr [66R'+ 65 V1.
Computing

tr[Q8s+ Poy)=21tr[ V,BIP,55]+21tr [QzCZstc(]+‘f (P85 V265 + Q8L Ry5]
and
2t [8:0P]=21tr (2,5, )+ 2tr [CZ3,85,1+2tr [Z1,B5 ]

and retaining first-order terms, we obtain (4.20). . .
To evaluate (2, use (4.8) and (4.10) to replace R’ and V' ia the last term in ) and

write A'= A+ 83, to obtain R
Q=tr[@cl (A*85+ 85 A)+ P cl (Abg+ B3A*))
(4.22) +1tr [Q(8%65+ 8p5:)+ P(8:55+565%)]

—tr[8gcl (A*P'+ PA)+ 85l (A'Q'+ QA
Next we note that ' ‘ _
(4.23) tr[Q cl (A*85+8pA%)) =tr[55 cl (AQ+ QA™)].

To see this we observe that by arguments similar to those used in the proof of Lemma
4.4 and the fact that 85: D(A) > D(A*) it follows that

5p= —I e‘.' cl (A."Gp+ GpA.) e"’ d.
0

Now, using the technique of Lemma 4.3 with the role of R played by —cl (A.“&p + 6,;1),




we see that

Similarly, it can be shown that

so that

+1tr[85(8% P+ Pos)+ 82(5:Q+ Q5%))

Using (4.8) to obtain
0=A'55+85A"+5:0+Q6%+5¢

and (4.10) to obtain a similar relation involving P, we have

(4.25) 121 = e\ ll(8a, 35, S

LEMMA 4.8. o, is open.

LEMMA 4.9. Q, and P; are positive definite.

be rewritten as

of (A, B, C.) implies

(4'26) 2( sA,’ 8',’ 8C,) =0
for all (84, 8s, 8¢,). Clearly, (4.26) is equivalent to
(4.27) Z,=0,
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tr[(Qcl (A*85+65A)] = —tr (65 V]=1tr [65 cl (AQ+ QA*)].

(4.29) tr[ P cl (Asg+83A*)] =tr[54 cl (A*P + PA)].
Now substitute (4.23) and (4.24) into (4.22) and rearrange the second term in (4.22)

Q=4tr[85cl (A*P+ PA)+6pcl (AQ+ §A*)]

—$tr[8scl (A*P'+ P AY+8pcl (A'Q'+(F'A™)]
=—dtr[8gcl (A*8s+85A")+55 ¢l (A'55+85A™)).

Q=tr[85(8%5P+ Bo;+62)1+tr [8,0+ Q8%+ 50)).

Restricting (A¢, B;, C;) to N (see (4.14)), using Lemma 4.6 and noting that §; and
85 have finite rank, it follows that there exists ¢, >0 such that

Combining {1 with the second-order terms in A yields the desired result.

Proof. From the “‘generic™ property of controllability and observability [62, p. 44]
there exists an open neighborhood of (A, B, C.) each of whose elements is minimal.
Combining this fact with Lemma 4.5 yields the desired result.

Proof. First note that expanding the R"-™"-component of the Lyapunov equation
(4.8) yields (4.50) below. By a minor extension of results from [66] or [67], (4.50) can

0=(A.+B.CQ,;Q3)Q:+ Q(Ac+ B.CQ,,Q:)" + B.V,B,

where Q3 is the Moore-Penrose or Drazin generalized inverse of Q,. Next note that
since (A, B.) is controllable then so is (A.+ B.CQ,,Q3, B.VY?). Now, since Q, and
B.V,BT are nonnegative definite, it follows from [62, Lemma 12.2] that Q, is positive
definite. Similar arguments show that P, is positive definite.

Having established Lemmas 4.1-4.9, we can now proceed with the proof of the
Main Theorem. Let (A, B., C.) € &, be as in the Main Theorem and consider (4.19)
with (AZ, B, C.) confined to &,. Because £: R™"" xR"™ xR™ " +R is a bounded
linear functional and . is open, the convergence in (4.21) implies that 2 is precisely
the Frechet derivative of J with respect to (A, B, C.). Since &, is open, the optimality
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(4.28) V,BIP,+CZ% =
(4.29) Q,CTR,+Z%B=0.
Thus, B, and C, are given by
(4.30) B.=-P;'Z, C*V;',
(4.31) C.=~R;'B*Z,,Q;".

Although B, and C, are now determined in terms of @ and P, A, remains to be
found. Morecover, Q and P themselves depend (via (4.8) and (4.10)) on B, and C-
Hence our task now is to consolidate and simplify (4.7)-(4.10), (4.27), (4.30) and (4.31)
to obtain the more tractable conditions (3.9)-(3.18). To this end let us define new
variables

(4.32a,b) QA Q- leo-l 12s P& P, - PnP;lez,
(4.33a,b) 04£Q,,0;'0%, Pap,P;'P}.

Clearly, Q and P are nonnegative definite and have finite rank. Since by Lemma 4.2
0, P e B,(F), it can be seen that Q,, P,c 3B,(#), which implies Q, P& B,(¥). To show
that Q and P are nonnegative definite, note that Q is the #B()-component of the
nonnegative-definite operator .QQ.Q‘ € B(¥), where

Ix —01202
24 [ o -I, ]

Similarly, P is nonnegative definite.
From the domain conditions (4.7) and (4.9) it follows that

(4.34a,b) Qi1 2(A%) > 2(A), P :2(A)> 2(A%),
(4.35a,b) Qi2:R™ > 2(A), P iR > D(A*),

which lead to (3.12) and (3.13).
Next note that (4.27) is equivalent to (3.8) with

(4.36a, b) G4 Q:;'Qt, r4-p;'p,
and that (3.7) holds with
(4.37) M2 Q,P,.

Since Q; and P, are positive definite, Lemma 2.6 implies that M is positive semisimple.
We can also define 7= G*I' which, by (3.8) satisfies 7>= 7. It is helpful to note the
identities

(4.38a,b) Q Q.:G=G*Q}, P= -P,I'=-T*PL,
(4.39a,b) 0=G*Q,G, P=r*pT,
(4.40a,b) G* = G*, Fr=T,
(4.41a,b) 0=10, P=~,
(4.42) QP =-Q,, P
From (3.8) and (2.1) it follows that
(4.43a,b) p(G)=p()=n,
(4.44a,b) p(Qi2) = p(Py3) = n..

|
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Hence, (2.2) and (4.38) imply n. =p(Qi:)+p(G)~n.=p(0)=p(Q,2) = n, which
yields (3.14a). Similarly, (3.14b) holds and (3.14¢) follows from (2.2) and (4.42).

Using (4‘.38) and (4.39), the components of Q. and P can be written in terms of
GUTl,Q P, Qand P as

(4.45) 0,=0+Q, P, =P+P
(4.46) Q.=Qr*,  P,=-PG*,
(4.47) Q,=TQr*, P,=GPG*.

Now (3.10) and (3.11) can be obtained by substituting (4.45)-(4.47) into (4.30) and
(4.31).

Expanding the B(¥), B(R", ¥) and R™ " components of (4.8) and (4.10) yields

(4.48) 0=AQ,+Q,A*+ BC.Q%+ Q,,(BC.)* + Vi,
(4.49) 0=AQ,;+ QAT+ BC.Q;+ Q,(B.C)*,

(4.50) 0=AQ;+ QA+ B.CQ,,+ QH:(B.C)*+ B.V,B/],
(4.51) 0=A*P,+ P,A+(B.C)*P%+ P,,B.C+R,,
(4.52) 0= P,,A.+ A*P,,+(B.C)*P,+ P,BC,,

(4.53) 0=AlP,+P,A.+(BC.)*P,,+ P4BC.+ CIR,C.

Substituting (4.45)-(4.47) into (4.48)-(4.53), using the identities
B.C =TQS, BC.= -2 PG*,

B.V,B] =T QEQr*, CIR,C.= GPXPG*,
and defining ~
Ao2A-Q%, Ap&A-3P,

we obtain

(4.54) 0=AQ+QA*+ A0+ QA+ V,,

(4.55) 0=[A,0+QEQ+ (T ATG+5Q)Ir*,

(4.56) 0=T[G*ATQ+Q30+Q2Q+0O(I*ATG+3Q)r*,
(4.57) 0=A*P+PA+ALP+PA,+R,,

(4.58) =-[A%P+ P3P+ P(G*AT+31P)]G*,

(4.59) 0=G[[*ATGP+ P3P+ PiP+P(G*AT+3IP)IG*.

We are now in a position to determine A, by computing (4.56) —'(4.55) which
yields (3.9). Alternatively, A, can be obtained by computing (4.59)+ G(4.58). As
mentioned in § 3, (3.9) is valid since G*:R"™ - 2(A) and A is given by (3.26).

Next we substitute the expressions for A, and Al into (4.55), (4.56), (4.58) and
(4.59) and compute the relations (4.55)G, G*(4.56)G, —(4.58)I" and I'(4.59)I to
obtain, respectively,

(4.60) 0=[A,0+ QAL+ Q3Q],
(4.61) 0=1[A,0+ QAL+ QLQ)",
(4.62) 0=[A4P+PAo+ PIPjr,
(4.63) 0=1*[ALP+ PA,+ PSP
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Note that (4.60)-(4.63) are equivalent to (4.55), (4.56), (4.58) and (4.59) since G and
I' have full rank. Since (4.61) = 7(4.60) and (4.63) = 7*(4.62), (4.61) and (4.63) are
superfluous and can be omitted. Thus we have derived (3.17) and (3.18).

To obtain (3.15) and (3.16) we need only compute the relations (4.54) + 7(4.60) —
(4.60) — (4.60)* and (4.57) + 7*(4.62) — (4.62) ~ (4.62)* and use (4.41).

Finally, to show that the preceding development entails no loss of generality in
the optimality conditions we now use (3;9)—(3.18) to obtain (4.7)-(4.10) and (4.27)-
(4.29). Let A, B, C, G, T, 7,Q P, é, P be as in the theorem statement and define
Q., Qia, @1, P,, P,,, P, by (4.45)-(4.47). Note that (3.12) and (3.13) imply (4.34) and
(4.35) and hence (4.7) and (4.9). Using (3.8), (3.10), (3.11) and (3.22) it is easy to
verify (4.27)-(4.29). Finally, substitute (4.32), (4.33) and (4.36) into (3.15)-(3.18),
reverse the steps taken earlier in the proof and use (3.9)-(3.11) to obtain (4.8) and
(4.10), which completes the proof. D

8. Concluding remarks. This paper has considered the problem of quadratically
optimal, steady-state, fixed-order dynamic compensation for linear infinite-dimensional
systems. The Main Theorem presents the stationarity conditions of the optimization
problem in a highly simplified and rigorous form. The “optimal projection equations™
(3.15)-(3.18) (or, equivalently, (3.27)-(3.30)) of the Main Theorem reveal the essential
structure of the first-order necessary conditions and display the central role played by
the optimal projection 7. The relationship of the Main Theorem to the standard
finite-dimensional steady-state LQG problem can be demonstrated by replacing  with
the identity matrix and noting that (3.27) and (3.28) reduce immediately to the familiar
pair of operator Riccati equations and that (3.29) and (3.30) yield the controllability
and observability gramians of the controller.

Inasmuch as the Main Theorem is a fundamental generalization of classical
steady-state LQG theory, a number of issues must be reexamined. Hence, in conclusion
we should like to point out some possible extensions of the Main Theorem along with
directions for further research.

1. Sufficiency theory. Although sufficient conditions for the existence of an optimal
compensator were not investigated in this paper, auxiliary conditions based upon the
structure of (3.15)-(3.18) could perhaps be imposed upon Q, P, Q and P to single out
the global optimum from amongst the local minima. This would be similar to the
situation in LQG theory where, under stabilizability and detectability hypotheses,
optimal stabilizing Q and P are identified as the unique nonnegative-definite solutions
of the pair of algebraic Riccati equations.

2. Stabilizability. Just as in the full-order LQG problem, one would expect a
natural relationship between the structure of the optimal solution and stabilizabil-
ity/ detectability hypotheses. The results of [41], {42] and [68] could serve as a starting
point in this regard.

3. Numerical algorithms. 1n practical situations, the distributed parameter system
would be replaced by a high-order discretized model for which the matrix version
(rather than the operator version) of the optimal projection equations could be solved
numerically. A numerical algorithm for solving the matrix version of the optimal
projection equations has been developed in [32] and {34]. The proposed computational
scheme is fundamentally quite different from gradient search algorithms {17], [18],
[213,[22], [24], [25], [28), [30] in that it operates through direct solution of the optimal
projection equations by iterative refinement of the optimal projection.

4. Convergence. One of the principal uses for the optimal projection equations
will be (0 understand the relationship between fixed-order dynamic-compensator
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designs which are optimal with respect to approximate models and the optimal
fixed-order dynamic compensator for the distributed parameter system itseif. By con-
sidering a sequence of nth-order approximate models which converge to the distributed
parameter system, conditions would be sought guaranteeing that the sequence of
fixed-order compensators based on each approximate model approach the optimal
dynamic compensator based upon the distributed parameter system (see [38]-[40]).
This approach is analogous to the convergence results obtained in [7], [8] with the
major difference being that the optimal projection equations permit the order of the
compensator to remain fixed in accordance with real-world implementation constraints
whereas in [7]-[9] the order of the compensator increases without bound.

5. Unbounded control and observation. An important generalization of the problem
considered in this paper involves the case in which the input and output operators B
and C are unbounded. The mathematical details for this problem are considerably
more complex (see, e.g., [69]).

6. Singular observation noise/singular control weighting. As pointed out in {22],
[33], [36] the assumptions of nonsingular control weighting and nonsingular observa-
tion noise preclude the use of direct output feedback as in

(5.1) u(t)=Cex.(t)+ D.y(r)
since J is undefined unless

tr[DIR,D.V,]=0(¢> R,D.V,=0).

Although with due attention to (5.1) direct output feedback can be used in the singular
case, the nature of the problem forebodes ali of the difficulties associated with the
singular LQG problem. Note that the deterministic output feedback problem [70],
when viewed in this context, is highly singular.

7. Discrete-time system/ discrete-time compensator. Digital implementation can be
modelled by a discrete-time compensator with control of a continuous-time system
facilitated by sampling and reconstruction devices. See [71], [73] for results in this
direction.

8. Cross weighting/ correlated disturbance and observation noise. This extension is
straightforward and entirely analogous to the LQG case (see, e.g., [18, p. 351]).
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1. Introduction

Approximation methods for the optimal control of distributed parameter systems have been
widely studied. In particular, the approach taken in [1-12] involves approximating the original
distributed parameter system by a sequence of finite-dimensional systems and then using finite-
dimensional control-design techniques to obtain a sequence of approximating, sub-optimal control
laws, observers, or compensators. Furthermore, in these treatments it was demonstrated that if
the open-loop system is approximated appropriately, then it is possible to guarantee convergence
of the sequence of sub-optimal controllers, observers, or compensators, respectively, to the optimal
controller, observer, or compensator for the original infinite-dimensional system. In addition, it
can also be shown that when the approximating sub-optimal control laws or estimators are applied
to the original system, near-optimal performance can frequently be obtained. These ideas were
pursued in the context of both open- and closed-loop control, in both continuous and discrete-time,
and for both full-state-feedback control and LQG (i.e., Kalman-filter-based) state estimation and

compensation.

In practical situations, however, it is often of interest to obtain the simplest (i.e., the lowest
order) controller which provides a given, desired feedback performance. This is usually achieved
in one of two ways. Either the plant approximation order is reduced prior to controller design, or,
alternatively, reduction techniques are applied to a given high-order control law. Unfortunately,
the former approach may result in undesirable spillover effects while the latter may yield low-order
controllers of low authority which perform unacceptably. In fact, with the second approach, this
may occur even when a suitable controller is known to exist. For example, as is shown in {13],

controller reduction techniques may even destabilize the closed-loop system.

A third, more direct approach involves fixing the controller order a priori, and then optimizing
a performance criterion over the class of fixed-order controllers. In a finite-dimensional setting, a
set, of necessary conditions in the form of four coupled matrix equations (as a direct extension of
the pair of the separated Riccati equations of LQG theory) which characterize the optimal fixed-
order compensator was derived in [14]. These four equations are coupled via an oblique projection
(idempotent) matrix. In the full-order case, this projection becomes the identity thus effectively
eliminating the additional two equations, and the necessary conditions reduce to the standard LQG

Riccati equaticns.




The notion that this direct (i.e., fixed-finite-order) approach can be applied to distributed
parameter systems was first suggested by Johnson in [15] and further developed in [16] and [17).
To realize such an approach, however, would require a suitable generalization of the optimality
conditions for the finite-dimensional fixed-order theory. This result was subsequently obtained in
[18] where the matrix optimal projection equations obtained in [14] for finite-dimensional systems
were extended to a set of four coupled operator Riccati and Lyapunov equations characterizing

optimal fixed-finite-order controllers for infinite-dimensional systems.

In developing numerical schemes to actually compute fixed-finite-order compensators for
infinite-dimensional systems, one might consider an approach wherein LQG reduction procedures
are applied to a sequence of controllers obtained by using finite-dimensional full-order design tech-
niques in conjunction with high-order finite-dimensional plant approximations. However, such an
approach is unappealing for two reasons. First, since such methods are not predicated on the
minimization of a performance index, prospects for convergence are slim. And, second, controller-
reduction methods have not proven to be reliable in producing stabilizing compensators (see, for

example, [13]).

Hence, on the other hand, we develop an abstract approximation framework (and ultimately
computational schemes) which combine the infinite-dimensional optimal projection theory of (18]
with the approximation ideas developed in [9-12] for infinite-dimensional LQG problems. More
precisely, our approach involves constructing a sequence of approximating finite-dimensional sub-
spaces of the original, underlying, infinite-dimensional Hilbert state space along with correspond-
ing sequences of bounded linear operators which approximate the given input, output, and system
operators. Then, by choosing bases for these approximating subspaces and applying the finite-
dimensional optimal projection theory, a sequence of matrix equations characterizing a sequence
of approximating optimal, fixed-finite-order compensators for the distributed system is obtained.
Finally, numerical techniques for solving the matrix optimal projection equations (for example, the
homotopic continuation algorithm described in [19] and [20]) can be used to compute the sequence

of approximating gains.

Our primary aim in this paper is to describe the general approach we are proposing, to discuss
its implementation, and to demonstrate its feasibility and practicality. We offer no convergence
arguments here, but rather reserve them for a more theoretical paper to follow. Instead, we consider

the application of our technique to two examples. One involves the control of a one-dimensional,




single-input, single-output parabolic (heat/diffusion) system while the other involves a single-input
single-output one-dimensional hereditary control system. These relatively simple examples have
been used throughout the distributed parameter control literature to illustrate the application of
new theories and techniques. A detailed discussion of the application of our ideas to more complex
control systems, for instance, the vibration control of flexible structures, will also appear elsewhere.
We use spline- based Ritz-Galerkin finite element schemes to approximate the open-loop systems
(one for which convergence can be demonstrated in the LQG case) and present and discuss some

of the numerical results which we have obtained using our general approximation framework.

We now outline the remainder of the paper. In Section 2 we briefly review the infinite-
dimensional optimal projection theory from [18], describe the approximation framework, and derive
the corresponding equivalent matrix equations and feedback gains which characterize the approx-
imating fixed-finite-order compensator. In Section 3 we consider the examples, construct the ap-
proximation schemes, and discuss our numerical findings. Section 4 contains a summary and some

concluding remarks.

2. Optimal Projection Theory and Finite-Dimensional Approximation

We consider the following fixed-finite-order dynamic-compensation problem. Given the infinite-
dimensional control system

z(t) = Az(t) + Bu(t) + Hyw(t) (2.1)
with measurements

y(t) = Cz(t) + Haw(t), (2.2)
where ¢ € [0,00), design a finite-dimensional, n th-order dynamic compensator
i'=(t) = Aczc(t) + ch(t); (2.3)
u(t) = C.z.(t) (2.4)
which minimizes the steady-state performance criterion

J(Ac, B, C.) = ‘I_x.zzxo IE[(R1=z(t), z(t)) + u()™ Rau(?)]. (2.5)

For convenience we denote the infinite-dimensional plant by IT; that is,

I é {A’ B) C: th Rz,Vl,Vz}-

3




Here z(t) lies in a real, separable Hilbert space X with inner product {-,),A: Dom(4) c X — X is
a closed, densely defined operator which generates a Cy semigroup {T'(t) : t > 0} of bounded linear
operators on X,B € L(IR™, X), and C € £(X,IRY). We assume that the state and measurement
are corrupted by a white noise signal w(t) in a real, separable Hilbert space I (see [21] or [22]),
that H; € £(f ,X),Hs € L(L,R), R, € L(X ) is (self-adjoint) nonnegative definite, and that R,
is an m x m (symmetric) positive-definite matrix. We define V;, = H1H; and V3 = H3 H;, where
()* denotes adjoint, and assume for convenience that Hy H; = 0 and that V; is positive definite.
The compensator is assumed to be of fixed, finite order n. (i.e., z.(t) € IR™) and that A, B,
and C, are matrices of appropriate dimension. For further details and discussion on the problem

statement and the above assumptions, see [18].

We summarize here the primary result from [18] characterizing optimal fixed-finite-order con-
trollers. For convenience define T = BR;'B* and £ £ C*V,;"!C. Also let I,,, and Iy denote

respectively the n, x n. identity matrix and the identity operator on X.

Theorem 2.1. Let n. be given and suppose there exists a controllable and observable n th-
order dynamic compensator (A., Be,C.) which minimizes J given by (2.5) and for which the closed-

loop semigroup generated by
48 A BC,
Bcc Ac

is uniformly exponentially stable. Then there exist nonnegative-definite operators Q, P,Q,P on X
such that A, B., and C, are given by

A.=T(A-QZf - ZP)G", (2.6)
B.=IQc'v;!, (2.7)

C.=~-R;B*PG", (2.8)

where Q : Dom(A*) —» Dom(A4),P : Dom(4) '~ Dom(A4*),@ : ¥ — Dom(A),P : ¥ —
Dom(A*), and G, I" € L(X,IR™), and such that the following conditions are satisfied:

rank @ = rank P = rank QP =n,, (2.9)

QP=G'MI, TIG' =I,,, (2.10)

for some M € IR™* %",




0=AQ+QA*'+V1 - QLQ +7,.QXQr}, (2.11)
0=A'P+ PA+ R, - PLZP+r}PZPr,, (2.12)
0=(A-ZP)Q+Q(A-ZP)* +Q2Q - r QEQr}, (2.13)
0=(A-QE)'P+B(A-QE)+ PEP -1 PZPr,, (2.14)
where
r£G'T, 1 2Ir-r

It is shown in [18] that the factorization (2.10) for the nonnegative-definite operators Q and P
satisfying rank le = n. always exists and is unique except for a change of basis in IR™. It is also

shown in (18] that I'* : IR™ — Dom (A®) so that the expression (2.8) is well defined.

Equations (2.11)-(2.14) are, in general, infinite-dimensional operator equations. To actually use
them to compute the optimal fixed-order compensator, a finite-dimensional plant approximation is
required. For each N = 1,2,..., let XV denote a finite-dimensional subspace of X and let PV :
X — XV denote the corresponding orthogonal projection of X onto X¥. Let AN € L(X¥),BY e
L(R™, XN),CVN € £(XVN,IRY, RN € £(X"), and VN € L(XN). We consider the system (2.6)-
(2.14) with the plant IT replaced by the plant JTV given by

N £ (AN BN ,CN,RN R, VN ,Va).

Typically, the operators B¥,CN, RY and V}N are chosen as BN = PNB,CN = CPN RN = pNR,
and V¥ = PNV, with the requirement that PV converge strongly to the identity Iy as N — oo.
The operator AV is chosen so that it and its adjoint satisfy the hypotheses of the Trotter-Kato
semigroup approximation theorem (i.e., stability and consistency, see, for example, [23]). That is,
A" is chosen so that limpy .o TV (2)PN¢ = T(t)$, and limy oo TN (2)* PN $ = T(t)* 4, uniformly
in t for ¢ in bounded intervals, for each ¢ € X, where TV (t) = exp(tA¥), t > 0. We shall say more

about these choices for AN, BN ,CN RY, and V¥ when we address convergence questions below.

Although with the plant ITV equations (2.11)-(2.14) are finite dimensional, they are still oper-
ator equations. It is their matriz equivalents which are used in computations. Unless orthonormal
bases are chosen for the subspaces X~ (which is typically not the case in practice) some care must

be taken to obtain the appropriate matrix system.
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For each N = 1,2,-.., let {¢¥ }f:l be a basis for X~ and choose the standard bases for all
Euclidean spaces. For a linear operator L with domain and range XV or any Euclidean space,
let [L] denote its matrix representation with respect to the bases chosen above. Also, let oV
denote the kV-square Gram matrix corresponding to the basis {¢Y }f:l; that is, & = (¢, 4%,
i,7=1,2,...,k". Noting that

[(a")] = (#¥)'[AM]TeN, [(BM)'] = [BN]ToN, [(C™)] = (@#™)~YC)T,
(1) =@") (21,  (Z¥]=(BYIRT' BN, (ZV]=(e")7MCM Ve,

the matrix equivalents of the operator equations (2.11)~(2.14) become

0= [AV][@"] + [@)(#V) [AN]TeN + V] - [@¥)[Z¥][Q"]

+ [ MRMENQYN] - (V) rl]7e”, (2.15)
0= (8¥)~[AN]"9N [PV] + [PV] - [AN] + [RY] - [P¥][ZV][PV]

+ (@) el TRV [PV - (EV][PV][r], (2.16)
0= ([4N] - [EM[PY])@™] + [@N)(@V) 1 ([47] - (ZV][PN])TeN

+[@MEMQM] - M IQMIENQN(#M) ! - [rY]ToV, (2.17)
0= (@M)~*([aN] - [@V1[Z7]) TeN [BN] + [AV](1a"] - [@V]IEM))

+[PM[EN)[PY] - (eV) 1T eN [P NP Y. (2.18)

Therefore, if we define the k¥ x k" nonnegative-definite matrices

Qd 2 [@V)(e™) 1, Py 2 oM (PN,
QY £ Q™M) By £ oV (PN,
VON é [VIN](QN)-l’ Rg’ é d’N[R{v]’

z§ = (BNRFYBNT,  Z 2 [CN]TvieN),
we can solve the matriz optimal projection equations given in [14] corresponding to the matrix

plant mode]

ng’ £ {(A"],(BY],(cV], RS, R, VY Va
to obtain the matrices QY , P ,Q{,” and f’é" . The approximating optimal n,th-order dynamic
compensator {AY, BNY CN} is then given by

AY =1 ([aV] - Q¥ £ - ZI' AT) (G,

B = 1'Qd[c™]™vy Y,

c¥ = -Ry'(BY["R(G])T,
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where IV, GY € R™**"  and MV € R™*™ satisfy
Qév .(;v-—'G(I)vMNFéva FJV(G(I)V)T=IM’
[N =@y, [l =L - [V).

When an infinite-dimensional controller will suffice, C, = —~R;'B*P € £(X,IR™) and B, =
QC*Vy ! € L(R, X) are the usual infinite-dimensional LQG controller and observer gains (see {9]).
The operators P,Q € L(X) are the nonnegative-definite solutions to the two decoupled operator
algebraic Riccati equations (2.11) and (2.12) with r and r, formally set to Iy and O, respectively.
Since C, has range in IR™ and B, has domain IR, there exist vectors ¢, = (c},...,c™)T € xT, X
and b = (b3,...,b)T € x%_, X such that

[Cez)i = (c, =), ti=12,...,m, zeX,

and

2
ch=bc‘ry=zyib:, y‘:(yl)-")yt)emt-

=1
The vectors ¢, and b, are referred to as the optimal LQG controller and observer functional gains

respectively.

With regard to approximation for the full-order LQG problem, for each N = 1,2,... we take
n. = kV. Then it is not difficult to show that

and
BNy=(M)Ty, yelR

where ¢} € xT, XN and 8 € x¢_, XV are given by ¥ = CN¥(#N)~'¢Y and b)Y = (BY)T¢N
respectively with ¢ = (¢¥,...,¢8\) € x ;;',r N. The vectors c¢I¥ and &V are referred to as the
approximating optimal LQG controller and observer functional gains. To compute them we need
only solve two standard decoupled matrix algebraic Riccati equations for the k¥ x k™ nonnegative-

definite matrices QY and PY'.

A rather complete convergence theory for LQG approximation can be found in [9]. Essentially,

it is shown there that if the approximating subspaces XV are chosen so that the projections PV
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converge strongly to the identity as N — oo, the operators AN, BN, CN RN, and VN are chosen
as was described above, and the operators QV and P¥ are uniformly bounded in N, then Q¥ and
PN converge weakly to Q and P, respectively as N — oo. This in turn implies that CN — C,,
strongly, BY — B., weakly, c¥ — ¢, and b¥ — b, weakly, and the closed-loop semigroup
for the approximating optimal LQG compensator converges weakly to the closed-loop semigroup
for the optimal infinite-dimensional LQG compensator, as N — co. If, in addition, the operators
SN(t) = TV (t)+BN¥CY and §¥(t) = TV (t)- BNC¥ are uniformly exponentially stable, uniformly
in N, then Q¥ — Q and PN — P, strongly, C¥ — C. and BY — B,, in norm, ¢&¥ — ¢, and
b¥ — b., strongly, and the closed-loop semigroups converge strongly, as N — co. If RY and V¥
are coercive, uniformly in N, then S¥(t) and $¥(t) will be uniformly exponentially stable. If it is
also true that R; and V; are trace class and RYY P N . R; and VIN PN =V in trace norm then Q

and P are trace class and Q¥ P¥ — Q and PYP¥ — P in trace norm as N — co.

Returning to the fixed-finite-order case, we note that in general the approximating optimal
projection equations may not possess a unique solution. However, in [19] it is shown for the finite-
dimens:onal case that it is possible to obtain an upper bound for the number of stabilizing solutions.

Using topological degree theory, the following result was obtained in (19].

Theorem 2.2. Consider the equations (2.11)—(2.14) with the infinite-dimensional plant IT re-
placed by the finite-dimensional plant 7V. Let n, denote the dimension of the unstable subspace of
A" and assume that n, > n,. Then in the class of nonnegative-definite operators QV, PN QN PV
on XV satisfying rank QV = rank PV = rank QN PN = n., there exist at most

(min(k”, m,€) - n,

>, ne < min(k",m, 8),
n,—n,

1, otherwise,
solutions of (2.11)-(2.14), each of which is stabilizing. If, in addition, the plant (4Y,BN,CN)

is stabilizable by an n.tb-order ~w.atroller, then there exists at least one stabilizing solution of

(2.9)-(2.14).

Theorem 2.2 shows that while there may exist multiple solutions to the finite-dimensional op-
timal projection equations, in practice this number can be quite small. For example, if n, > n,
and the system is either single input (m = 1) or single output (£ = 1) then there exists at most
one solution to (2.9)-(2.14) for the plant /T¥. The existence of at least one stabilizing solu-

tion of course depends upon whe*, ~ or not the plant is stabilizable by an n th-order controller




(for relevant results, see [24]). Finally, while it may be possible to stabilize a plant with n, < n,,
this case lies outside the scope of the analysis given in [19].

3. Examples and Numerical Results

We first consider the one-dimensional, single-input/ single-output, parabolic (heat/diffusion)

control system with Dirichlet boundary conditions given by

%'ti(t,q) = ag—::-(t,n) + b(n)u(t) + hi(n)wi(t,n), 0<n<1l, t>0, (3.1)
v(t,0) =0, v(t,1)=0, t>0, (3.2)
y(t) = /1 e(n)v(t, n)dn + haw,(t), t>0, (3.3)

]

where a > 0, and b(-) and ¢(-) are given by

b(n) = 5, PiSn<h,
0, elsewhere,

and
o(n) = 2 m<nsT,
0, elsewhere,

with0< 81 <f2<1and0< v <72 5‘ 1. In (3.1) and (3.3), k() € Lx(0,1),w1(t,-) €
L2(0,1),a.a. t € [0,00), (see [22], p. 314), h; is a nonzero constant and wy(-) is unit-intensity white

noise.

To rewrite (3.1)—(3.3) in the form (2.1), (2.2), in the usual way we take X = L;(0,1) endowed
with the standard L, inner product, let z(t) = v(t,-),t > 0, define 4 : Dom(4) ¢ X — X by
A¢ = aD?¢ for $ € Dom A 2 H2(0,1)n HE(0,1), and define B € L(IR!, X) and C € £(X,IR?) by
Bu = b(-)u for u € IR, and C¢ = fol c(n)é(n)dn, for ¢ € Lg(O\, 1), respectively. Furthermore, let
X £ L3(0,1) x IR, set w(t) £ (w1(t,"), wa(t)) € £, and define H; € £(£,X) and H, € L(L,R?)
by Hyz = hi(-)z; and Haz = hgzy for z = (21,23) € z.

1t is well known (see, for example, [23]) that A is closed, densely defined, and negative definite.
Furthermore, A is the infinitesimal generator of a uniformly exponentially stable, analytic (abstract

parabolic) semigroup {T'(t) : t > 0} of bounded, self-adjoint linear operators on X.

We consider linear spline-based Ritz-Galerkin approximation for the open-loop system. For

each N =2,3,..., let {¢)}¥]! be the linear spline (“hat”) functions defined on the interval [0,1]

9




with respect to the uniform partition {0, %, %,...,1}, i.e.,

Nn-j+1, neliF §),
$7 (M) =1{j+1-Nn, nelf &),
0, elsewhere on [0,1],
i=12..,N-1 Set XN = span{¢}})3' and note that kKN = dimX¥ = N ~1, and
XN c H}(0,1) for all N. If PN : X — XN denotes the orthogonal projection of X onto X%,
then standard convergence estimates for interpolatory splines (see [25]) can be used to show that

limpy oo PN ¢ = ¢ in L2(0,1) for ¢ € Ly(0,1).

There are two equivalent ways to obtain an operator representation for the usual Ritz-Galerkin
approximation to A. First, A can be extended to a bounded linear operator from H(0, 1) onto its

dual, H-1(0,1), via
(A¢)(¢) = —a(D¢,D¢),  ¢,% € H3(0,1). (3.4)

Since XV < H}(0,1) for all N = 2,3,..., we define AN € L(XN) by ANgN = AN, ¢V € XV,
with A¢" € H~1(0,1) considered to be a linear functional on X¥. From the Riesz Representation
theorem we obtain AN ¢N = ¢V where ¢ is that element in XV which satisfies (AN ™) (xV) =
—a(Dg", DxM) = (¢V,x").

Alternatively and equivalently, by using the fact that A is self-adjoint, we can define AN as
follows. Let PN : H}(0,1) — XN denote the orthogonal projection of the Hilbert space HJ(0,1)
onto X¥. Using the definition (3.4), it is not difficult to show that —4 € £(HJ(0,1), H(0,1))
is coercive and, therefore, that Al H ~1(0,1) — H}(0,1) exists and is bounded. We then define
AN € L(X V) to be the inverse of the operator given by (AN)™1 = PN A~! |z~ .

Using either definition, it is easily argued that AY is well defined, self-adjoint, and is the
infinitesimal generator of a uniformly exponentially stable (uniformly in N) semigroup, TV (t) =
exp(tAV),t > 0, of bounded linear operators on X~. Also, using the approximation properties of
splines, it is not difficult to show that limyoo(AN)"1PN¢ = A~1¢,¢ € X. Consequently, the
hypotheses of the Trotter-Kato theorem (see [23]) are satisfied and we have limy o, TV (t)PNg =
T(t)¢ and imy oo TV(t)* PN ¢ = T(t)*¢,4 € X, uniformly in ¢t for ¢ in bounded intervals. A

detailed discussion of the results just outlined can be found in [8].

We define BN = PY B and C¥ = CP¥, from which it immediately follows that limy .., BN =

B and limy 0o C¥ = C in norm and similarly for their adjoints. For the example we shall consider
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here, we have chosen R, = riIx, Ry = rql,, with rq,ry > 0. Setting hy(n) = v?,O <n<1,and
hy = v? with vy,v3 > 0, we obtain V; = v;Iy and V3 = v;. We then take R = PNR, and
V¥ = PNV,. For the LQG problem, the open-loop uniform exponential stability of both the
infinite-dimensional system and the approximating systems is sufficient to conclude the strong
convergence of the approximating Riccati operators to the solutions of the infinite-dimensional
Riccati equations, the uniformm norm convergence of the approximating controller and observer

gains, and the strong convergence of the functional gains, as N — oo.

Since the basis elements {¢N}¥=! are piecewise linear with respect to the uniform mesh
{0, %, %, ...,1} on [0,1], the equivalent matrix representations for the operators defined above can
be computed directly and in closed form. The Gram matrix 5 = (¢7,¢¥),i,7=1,2,...,N - 1
is given by #¥ = LTridiag{},2,1}, and if we define the generalized stiffness matrix ¥V by
v = —a(DeY,D¢Y),i,7 = 1,2,...,N — 1, then ¥V = aN Tridiag{1,-2,1}. It follows that
[4¥] = (@¥) 10N, [BY] = (@)1, [C¥] = N, with BY = (b,6) = 515 [2* 41 (n)dn, and

¥ =(c,¢V) = A :: ¢N(n)dn,i =1,2,...,N -1, and that RY = r; &N and V¥ = v, (V)-L.

For our numerical study we set a = 1,8y = .75—.03v/2, 83 = 75+.04v/2,9; = .25~ 042,79, =
25+ .03v2,r; = vy = 1,73 = vy = 107%,h1(n) = 1, and used our technique to compute approxi-
mating optimal LQG (i.e., n. = N — 1) and 1st order (i.e., n, = 1) compensators for various values
of N. The open-laop stability of system (3.1)-(3.3) and the approximating systems imply that the
finite-dimensional approximating optimal projection equations have a solution. Theorem 2.2 on the
other hand, with n, = 0 and n, =1 or n, = N ~ 1, implies that they have at most one solution.

Consequently, the system of equations (2.11)-(2.14) with the plants /7 admits a unique solution.

The optimal projection equations (2.11)~(2.14) were solved using the homotopic continuation
algorithm described in [19]. It is shown in [19] that the operation count for the algorithm is
proportional to p(2n® + (m + £)n? + (m + £)3n2) where p is the number of integration steps and n
is the dimension of the finite-dimengional plant. This is competitive with the operation count for
the Hamiltonian sclution of the standard Riccati equations which is O(16n?) for LQG. Also, note
that the computational burden for the solution of the optimal projection equations decreases with

Ne.

Since m = £ = 1 in the LQG case, the optimal functional observer and feedback control gains
b. and c. and the approximating gains b~ and c¥, are all simply L; functions with 5% and ¢V

elements in XV, We plot the functions Y and ¢/ we obtained for various values of N respectively
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in Figures 3.1 and 3.2 below. That convergence is indeed achieved can immediately be observed in

the figures.
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In the fixed-order case with n, = 1, the compensator gains A,, B., and C, are all scalars. Also,
for a first-order controller there are only two independent parameters, A, and B.C.. In Table 3.1
below we give the values we obtained for AY and BNCY¥ for various values of N. Once again,
it is clear that the gains are converging as N increases. In addition, in Table 3.1 we provide the
closed-loop costs Jlqg and Jf¥ for the LQG and first-order controllers. These closed-loop costs
were evaluated using a 64th-order modal approximation to the infinite-dimensional system. For all
values of N the performance of the fixed-order compensator was within 2% of the corresponding
LQG controller. Thus, for example, the replacement of a 32nd-order approximating optimal LQG
controller by an approximating optimal first-order controller will yield considerable implementation
simplification with only minor performance degradation. Note that for the example we consider

here, it is possible to compute the open-loop cost for the infinite-dimensional system in closed form.
We have
o0 (- -]
Jor =tr / ViT* () RiT(t)dt = vyrstr f T(¢)de
0 0

00 oo
= vyry e“’"":“dt _un 1
Z 0 2x3a n?

n=

Finally, for comparison purposes, we tried applying balancing techniques to the LQG controllers
to reduce their order. However, with n. = 1, such controllers were found to be destabilizing. Based

upon the results in [13], this was not unexpected.

N Al BYcY Jige Jfo

4 -687.6 5470 .06999 .07014

-720.9 5231 06870 06993
12 -730.9 5182 .06872 .06991
16 -734.3 5145 06874 .06990
20 -738.0 5127 06875 .06990
24 -737.6 5108 .06876 .06990
28 -739.8 5109 06876 .06990
32 -738.7 5099 06877 .06990

Table 3.1

13

[
[
|
—
|
2
(7]
(4]
(2]
s oy o Ou &P sh S G NN P B S AN G A AN Ny B e




As a second example we consider the one-dimensional, single-input, single-output hereditary

control system given by
o(t) = aov(t) + agv(t — p) + bou(t) + hyw(t), t>0, (3.5)

y(t) = cov(t) + haw(t), t>0, (3.6)

where ao, 21, ba, ¢o, k1, k2,0 € IR? with hs # 0, and w is a unit-intensity white noise process. To
rewrite (3.5), (3.6) in the form (2.1), (2.2), we take X = IR! x Lj(—p,0) endowed with the usual
product space inner product, {(n,4),(§,¢)) =né + f_op é¢, and let z(t) = (v(t),v:), t = 0, where
fort >0, v; € Ly(—p,0) is given by v¢(d) = v(t+8), —p < 8 < 0. Define A: Dom(4) ¢ X — X by
Ad = (a0#(0) + a14(~p), D¢) for § = (4(0),4) € Dom(4) £ {(£,¢) € X:¢ € H'(~,0),9(0) =
€}, and let B € L(IR',X) and C € £(X,IR!) be given by Bu = (bou,0) and C(n,4) = con,
respectively. Let £ = IR and define H; € £({,X) and H; € £(X,IR!) by Hyz = (h12,0) and
Hyz = hyz, for z € R

The operator A is densely defined and is the infinitesimal generator of a Cp semigroup {T'(t): t >
0} of bounded linear operators on X with T(t)(n,¢) = (v(t;n, 8), vi(n,4)), t > 0, where v(-;n,4)
is the unique solution to (3.5) with by = h; = 0, and initial conditions v(0) = n,uy = ¢. We take
R, € £(X) and R; € L(IR?) to be Ry(n,$) = (r11,0) and Rzu = rau, respectively, with ry,r; > 0.
The definitions of Hy and H; given above imply that V; € £(X) and V; € L(IR!) are given by
Va(n, ¢) = (hin,0) and Vaz = h}z, for (n,¢) € X and z € IR

We employ an approximation scheme recently proposed by Ito and Kappel in (26]. We briefly
outline it here; a more detailed discussion can be found in [26]. For each N = 1,2,... let x¥ €
L3(—p,0) denote the characteristic function for the interval [-jp/N, (3 - 1)p/N),j = 1,2,...,N
and let X~ be the (N + 1)-dimensional subspace of X defined by

?

X¥ =span{(1,0),(0,x¥),...,(0,xN)}.

Let PN: X — X™ denote the orthogonal projection of X onto XV. Let {¢2}I_ denote the linear B-
spline functions defined on the interval [—p,0] with respect to the uniform mesh [-p,...,—p/N,0},
and set LY = span{(¢f' (0),¢?’ )}:’:0. Then X{¥ is an (N + 1)-dimensional subspace of Dom(A)
and it is not difficult to demonstrate that the restriction of P~ to XN is a bijection onto X¥. Using
the fact that A restricted to X}V has range in XV, we define AN € L(X V) by AN = A(PV)?,
and set TV (t) = exp(ANt), t > 0. Noting that R(B) € XV, we take BN € L£(IR?, X V) to be given
by BN = B. Similarly, we take RY = R; and V¥ =V;. Weset CN =C.
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It is shown in [26] that P¥(n,¢) — (n,¢), T¥(@)P¥(n,4) — T(t)(n,¢), and
TN(t)*PN(n,4) — T(t)*(n,$) for (n,4) € X as N — oo, uniformly in ¢, for ¢ in bounded subsets
of [0,00). It then follows that limy_,oo BN = B and limy_,.o CNP¥ = C, in norm.

For the LQG (full-order) problem, the optimal functional observer and feedback control gains
b. and ¢, are of the form b, = (8o, 81) and ¢, = (y0,71) With Bo, 70 € IR?, and 81,41 € L3(—p,0).
The approximating gains are of the form Y = (8,4 ) and ¢ = (4{',4{¥) with 8Y,4Y € IR? and
ﬁf’ ,7Y¥ € span {x;v 9’=1. Since we are treating a one-dimensional example, if by # 0, the theory
in [26] implies that 8 — fo and v — 40 in IR, and Y — By, and v — 41 in La(—p,0), as

N = oo. .

Once again, as in the first example, matrix representations for the operators AN, BN, CN RN,
and V;N are not difficult to compute in closed form. Indeed, the (N + 1) x (N + 1) matrix repre-

sentation for the bijection PV: XN — X, is given by

1 0 0 T
+ ¢+ 0
0 0
[PN]= * %
0 3 2 0
[ o 0 4 4.
Then [AN] = [KV][PN]~1, where
a 0 0 ]
FMO -& 90 M
0o ¥ _x
[KN]= 0 P ) 0
T
I 0 0o & x|

We have the (N +1) x 1 matrix [BN] = [bp 0...0]™ and the 1 x (¥ + 1) matrix [C¥] = [¢ 0...0],
while [RYY] = r;[M¥] and [V{¥] = h3[MP] where the (N + 1) x (N + 1) matrix [M"] is given by

10 0
0

(MN] =
0 0

Weset ag =ay =bg =co=r, = h  =p =1, rg = .1, and hy = /.1 and computed

approximating optimal LQG (i.e., n. = N + 1) and first-order (i.e., n. = 1) compensators for

15




N = 8,16, 24, and 32. The optimal LQG observer gains are given in Table 3.3 and Figure 3.3; the
control gains are given in Table 3.4 and Figure 3.4. The first 23 open-loop poles of the system
(see [27]) are given in Table 3.2. The approximating first-order compensator gains along with the
corresponding and LQG closed-loop costs are given in Table 3.5 below. These costs were computed
using an evaluation model obtained by setting N = 64.. Note that the performance of the first-
order controllers is within 10% of the performance of the LQG controllers. Once again it is clear

that convergence is achieved.

1.278465
-1.588317 + 4.155305i
-2.417631 + 10.68603i
-2.861502 + 17.05611i
-3.167754 + 23.38588i
-3.401945 + 29.69798i
-3.591627 + 36.00146i
-3.751047 £ 42.29965i
-3.888543 + 48.59442i
-4.009422 + 54.88686i
-4.117267 + 61.17761i
-4.214618 + 67.46710i

Table 3.2

16




E me—t 4 ¢ O
- 8.0
2
5.0 —
3 -
< f-2.0
=
=
2.8 Z —
— s .
3
20 = E
3 § 3.0
Z
—— - —
- L8 4
El = 1.8
Ll —
g
— bt .0 - f-t .0
— - 0.8 — E o.8
——T ——————
A @ v e
1.0 -0.9 -2.8 8.7 -8.8 -0.8 -0.4 0.9 -~8.2 -0, a.e -1.8 9.0 0.8 -8.7 Q.8 Q.9 Q.4 0.3 -0.2 -8. 0.0
DLLAY COORDINATE IRLAY COMRNINATE
— —
=40 s @
e .s
-0 o - 3.0
~ -
1 3
— a 3
-~ 2.8 = — E 2.8
- 3 E
—_ ] - 1
—~2.0 -] —_ —2.0
— od — 9
_ : R :
Bk a p— 1.8
O— - -
> —
- =
—_ 4 — 3
— H - 3
-1.0 3 -— 1.0
— - 0.0 L E o.¢
—#_ —— M -
o r E 0.0
-1.0 8.9 0.8 8.7 9.8 0.8 8.4 9.9 .2 -0 0.0 -1.0 .8 O. 8 -8.7 0.8 9.8 8.4 9.9 ~0.3 0.t -0

OfLAY (DORDINATE

DELAY COMRNIRATS

Figure 3.3

16 24

32

N 4.4213

4.4229 4.4233

4.4234

Table 3.3

17

~VER
s O o e N By G ARyl G o A aE AN 0. = .




' NELAY COORDINATE DELAY COCROIMATE
oS 88 8.0 A7 8.0 08 -84 0.8 -0 0.t . Sieh  ~0.0 0.0 0.7 0.0 0.8  <-0.4 -9.3 -0.8 8.1 0.0
S 9.8 —— - .0
—————— e ———————
' _— . — e
— —1.8 —-1.0
l Y ;.; = -1.8
= —
te 3
- 3 g .0
S ——— :
' g “30 8 ———
: - o2
L
--3.0 g 9.0
}=4
' 3
- .08 = -5.8
@ _— .--4..
' = -4.8 - -a.8
OELAY COORDINATE NCLAY COORNINATE
F,‘u.o 8.8 8.7 8.8 0.8 8.4 8.8 0.3 8.1 0,0 “l® 0.0 0.8 8.7 0.8 <0.8 <64 -0.8 0.0 8.t o.0
——t — A 0 - o - . .0
e JEPRPRSEDE e
s = «8.0 — =~ =0.6
' e -
—_— YW } s -_— =~ -1.8
h —
5 2
— 3 - —
l — f~--2.0 3 — E--2.0
- -2.8 g — :- 2.8
= E
— <9
1 -—
3 - 2
—-3.8 -] -— 3.8
— E - 3
-
— E s g - = ..
. ._-d.l o~ 0 O
:-.- 8.8 - ~a.n

24

32

To

-4.4213 -4.4229 -4.4233

-4.4234

Table 3.4

18

REGULATOR FUNCTIVKAL GAIN (M232)




N AY BYCY Iiqe J¥o
8 -4.835 -16.057 1.4042 1.5221
16 -4.936 -16.343 1.403877 1.5298
24 -4.959 ~16.378 1.403856 1.5309
32 -4.962 -16.404 1.403852 1.5317
Table 3.5

4. Summary and Concluding Remarks

We have proposed an approximation technique for computing optimal fixed-order compensators
for distributed parameter systems. Our approach involves using the optimal projection theory for
infinite-dimensional systems (which characterizes the optimal fixed-order compensator) developed
in (18] in conjunction with finite-dimensional approximation of the infinite-dimensional plant. We
demonstrated the feasibility of our approach with two examples wherein we used spline-based Ritz-
Galerkin finite element schemes to compute approximating optimal first-order controllers for one-
dimensional, singe-input/output, parabolic (heat/diffusion) and hereditary control systems. Our
numerical studies indicate that convergence of the compensator gains is achieved and that using
the first-order controller would lead to only minimal performance degradation over a standard LQG

compensator while yielding significant implementation simplification.

At this point one is led naturally to ask the question of whether or not a satisfactory convergence
theory could be developed. We are working on this at present and expect that such a theory
would conform closely in form and spirit to the convergence results for LQG approximation found
in (9] and (10] and outlined in Section 2 above. We also intend to consider our approximation
ideas in the context of discrete-time or sampled-data systems, and for continuous-time systems
involving unbounded input and/or output (for example, boundary control systems), and systems
with control or measurement delays, see [11],{12]). Finally, we intend to investigate the application
of our approximation framework to other infinite-dimensional control systems, in particular the
vibration control of flexible structures (i.e., second-order systems such as wave, beam, or plate

equations).

Acknowledgment. The authors gratefully acknowledge Mr. S. W. Greeley, Mr. S. Richter,
and Mr. A. Daubendiek of Harris Corp. for carrying out the numerical computations reported in
Section 3. We also wish to thank Ms. J. M. Straehla, also of Harris Corp., for preparing the original
manuscript in TEX.
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Sequential design of decentralized dynamic compensators using the
optimal projection equations

DENNIS S. BERNSTEIN*

The optimal projection equations for quadratically optimal centralized fixed-order
dynamic compensation are generalized to the case in which the dynamic com-
pensator has, in addition, a fixed decentralized structure. Under a stabilizability
assumption for the particular feedback configuration, the resulting optimality
conditions explicitly characterize each subcontroller in terms of the plant and
remaining subcontrollers. This characterization associates an oblique projection
with each subcontroller and suggests an iterative sequential design algorithm. The
results are applied to an interconnected flexible beam example.

1. Introduction

The purpose of this note is to consider the problem of designing decentralized
dynamic feedback controllers using recently obtained results on quadratically optimal
fixed-order dynamic compensation (Hyland and Bernstein 1984). As in Bernussou
and Titli (1982). Looze et al. (1978), and Singh (1981), the overall approach is to fix the
structure (information pattern and order) of the linear controller and optimize the
steady-state regulation cost with respect to the controller parameters. The underlying
philosophy is that the ability to carry out such an optimization procedure permits the
evaluation of a particular decentralized configuration which may be dictated by
implementation constraints. If there is some flexibility in designing the decentralized
architecture, then these results can be used to evaluate the optimal performance of
each permissible configuration, and hence to determine preferable structures. Since
the present paper is confined to the question of optimal regulation, trade-offs with
re "ard to robustness in the presence of plant variations are not considered. Such
trade-offs can be included, however, by utilizing the Stratonovich multiplicative white
noise approach developed by Bernstein and Hyland (1985).

To further motivate our approach, consider the problem of controlling an nth-
order plant # by means of a decentralized dynamic compensator consisting of
subcontrollers 4, and ¢,. A straightforward design technique that immediately
comes to mind is that of sequential optimization (Davison and Gesing 1979, Jamshidi
1983). To begin, ignore ¥, and design ¥, as a centralized controller for . Next,
regard the closed-loop system consisting of 2 and €, as an augmented system #’ and
design ¢, as a centralized controller for #'. Now redesign ¢, to be a centralized
controller for the augmented closed-loop system composed of # and € ,, and so forth.
One difficulty with this scheme, however, is that of dimension. If, for example, one were
to employ LQG at each step of this algorithm, then on the first iteration ¢, would
have dimension n and thus €, would have dimension 2n. On the second iteration, €,
would require dimension 3n and €, would have order 4n, and so forth. Such

Received 15 December 1986.
+ Harris Corporation, Government Aerospace Systems Division, P.O. Box 94000,
Melbourne, Florida 32902, US.A.
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difficulties can be avoided by setting n =0, which essentially corresponds 10 static
output feedback. Although easier to implement, static output feedback iacks filtering
abilities such as are inherent in LQG controllers, which are purely dvnamic (i.e. strictly
proper).

As discussed by Sandell et al. (1978), p. 119, the explanation for this difficulty is
provided by the ‘second-guessing’ phenomenon: when LQG is used, each subcon-
troller must consist of linear feedback, not only of estimates of the plant states but also
of estimates of the other subcontroliers’ estimates. Hence the ‘optimal’ controller is
given by an irrational transfer function, ie. a distributed parameter (infinite-
dimensional) system, Such controllers, of course, must be ruled out since their design
and implementation (except in special cases) violate physical realizability (see, for
example, Bernstein and Hyland 1986).

Having thus ruled out zeroth-order and infinite-order decentralized controlilers,
we focus on the problem of designing purely dynamic decentralized compensators.
Moreover, by invoking the constraint of fixed subcontroller order, we overcome the
second-guessing phenomenon. Utilizing the parameter optimization approach thus
leads to a generalization of the result obtained by Hyland and Bernstein (1984) for
centralized control. In brief, it was shown in Hyland and Bernstein (1984) that the
unwieldy first-order necessary conditions for fixed-order dynamic compensation can
be simplified by exploiting the presence of a previously unrecognized obligue
projection. The resulting optimal projection equations, which consist of a pair of
modified Riccati equations and a pair of modified Lyapunov equations coupled by the
optimal projection, yield insight into the structure of the optimal dynamic com-
pensator and emphasize the breakdown of the separation principle for reduced-order
controller design. For example, the optimal compensator is the projection of a full-
order dynamic controller which is generally different from the LQG design.
Furthermore, this full-order controller and the oblique projection are intricately
related since they are simultaneously determined by the coupled design equations. An
immediate consequence is the observation that stepwise schemes employing either
model reduction followed by LQG or LQG followed by model reduction are generally
suboptimal. For computational purposes, the optimal projection equations permit the
development of novel numerical methods which operate through successive iteration
of the oblique projectic'. (Hyland and Bernstein 1985). Such algorithms are thus
philosophically and operationally distinct from gradient search methods.

The generalization of the optimal projection equations to the decentralized case is
straightforward and immediate. In the optimization process each subcontroller is
viewed as a centralized controller for an augmented ‘plant’ consisting of the actual
plant and all other subcontrollers. It need only be observed that the necessary
conditions for optimality for the decentralized problem must consist of the collection
of necessary conditions obtained by optimizing over each subcontroller separately
while keeping the other subcontrollers fixed. More precisely, this statement corre-
sponds to the fact that setting the Frechet derivative to zero is equivalent to setting the
individual partial derivatives to zero. Hence it is not surprising that the optimal
projection ¢ uations for the decentralized problem involve multiple oblique projec-
tions, one associated with each subcontroiler. Furthermore, each subcontroller
incorporates an internal model (in the sense of an oblique projection of full-order
dynamics) not only of the plant but also of all other subcontrollers. The structure of
the equations suggests a sequential design algorithm such as that proposed in this
work.
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The simplicity with which this resuit is obtained should not belie its relevance to
the decentralized control problem. Specifically, our approach is distinct from sub-
system-decomposition techniques (Ikeda and Siljak 1980, 1981, Ikeda er al. 1981,
1984, Lindner 1985, Linnemann 1984, Ozguner 1979, Ramakrishna and Viswanadham
1982, Saeks 1979, Sezer and Huseyin 1984, Silkak 1978, 1983) and model-reduction
methods since the optimal projection equations retain the full, interconnected
plant at all times. For the proposed algorithm, decomposition techniques which
exploit subsystem-interconnection data can play a role by providing a starting point
for subsequent iterative refinement and optimization. Decomposition methods may
also play a role when very high dimensionality precludes direct solution of the optimal
projection equations. These are areas for future research.

With regard to the role of the oblique projection, it should be noted that such
transformations do not, in general, preserve plant characteristics such as poles, zeros,
subspaces, etc. Indeed, since the oblique projection arises as a consequence of
optimality, approaches that seek to retain system invariants (e.g. Uskokovic and
Medanic 1985) are generally suboptimal. In addition, the complex coupling among
the plant and subcontrollers via multiple oblique projections provides an additional
measure for evaluating the suboptimality of the methods proposed.

The plan of the paper is as follows. The fixed-structure decentralized dynamic-
compensation problem is stated in § 2 along with the generalization of the optimal
projection equations. In § 3 we propose a sequential design algorithm for solving these
equations and state conditions under which convergence is guaranteed. Finally, in § 4
the algorithm is applied to the 8th-order model of a pair of simply supported beams
connected by a spring. For this example, we obtain a two-channel decentralized
design which is 4th-order in each channel and compare its performance with the (8th-
order) centralized LQG design.

2. Problem statement and main theorem
Given the controlled system

M= Ax0+ S Buuy(t) +wol) (2.1)
i=]
yi()=Cx(t) +wi(t), i=1..p 2.2)

design a fixed-structure decentralized dynamic compensator
x.ci(t) =Acixci(t) +Bciyi(t)’ i= l#'-'vp (23)
u(t)=Coxilt), i=1,..,p (24)

which minimizes the steady-state performance criterion

J(Acy, Beyy Ceyr ooy Apy Bep, Cop) 2 lim [E[x(t)TRox(t) + t u;(t)TR,-u,(t)jl (2.5)

t=x =1

where, fori=1,...,p: xeR", y;e R™ y,e RY, ¢, e R n_2& f N, N, SN+n.—n

. =1 . ;
A, B, C;, A, B, C., R, and R, are matrices of appropriate dimension with R,
(symmetric) non-negative definite and R, (symmetric) positive definite; w, is white
disturbance noise with n x n non-negative-definite intensity V;, and w; is white

ci
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observation noise with [; x [; positive-definite intensity V;, where wy, w,, ..., w, are
mutuaily uncorrelated and have zero mean. E denotes expectation and superscript T
indicates transpose.

To guarantee that J is finite and independent of initial conditions we restrict our
attention to the set of admissible stabilizing compensators

o 2 {(Aeq, By, Coys oy Ay By, Co,): A is asymptotically stable}

where the closed-loop dynamics matrix 4 is given by
ia A BC,
B.C A,

BA[B, .. B), C4

where

&

CP
A, 2 block-diagonal (4,,, ..., 4,)
B, @ block-diagonal (B, ..., B,,)

C. 2 block-diagonal (C,, ..., C,,)

(For possibly non-square matrices S, S,, block-diagonal (S,, S,) denotes the

. Sl 0
matrix .
0 S,

It is possible that for certain decentralized structures the system is aut stabilizable,
i.e. o is empty (Wang and Davison 1973, Seraji 1982, Sezer and Siljak 1981). Our
approach, however, is to assume that o/ is not empty and characterize the optimal
decentralized controller over the stabilizing class. Since the value of J is independent
of the internal realization of each subcompensator, without loss of generality we can
further restrict our attention to

o, & {(Ay, By, Cey, s Acp, Bep, Cop) € (A, B,;) is controllable and s
(C.;. A,) is observable, i=1,..., p}

The following lemma is an immediate consequence of Theorem 6.2.5, p. 123 of Rao
and Mitra (1971). Let I, denote the r x r identity matrix.

Lemma 2.1

Suppose @, P € R?*9 are non-negative definite and rank GP = r. Then there exist
G,I'e R"*9 and invertible M € R"*" such that

0P =G"MI (2.6)
ré"=1, 2.7

For convenience in stating the main theorem, call (G, M, I') satisfying (2.6), (2.7) a
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projective factorization of QP. Such a factorization is unique modulo an arbitrary
change in basis in R’, which corresponds to nothing more than a change of basis for
ihe internal representation of the compensator (or subcompensators in the present
context).

We shall also require the following notation. Let A; denote 4 with the rows and
columns containing A.; deleted. Similarly, let R; be obtained by deieting the rows and
columns corresponding to C%;R,;C,; in the matrix

R & block-diagonal (R,, CT, R, C,,, ..., CLR,C.,)

And furthermore, ¥, is obtained by deleting the rows and columns containing B_, V, B,
in

¥ & block-diagonal (V,, B., V, BY,, ..., B, V,B],

PP

Also define

-~ Bi
Bi a [0 ]9 Ci 4 [Cl Olix(nc"lc()]

(M — ) x my

where 0,,, denotes the r x s zero matrix. Note that 4;, B;, €, R, and V, essentially
represent the closed-loop system minus the ith subcontroller as controlled by the
latter. Finally, define

% 4 EiRi—lB.”ir’ % 4 CT V;-lc

and, for re R *", let

7,8 —1

Main theorem

Suppose (A.;, By, Cey, ..., Acps Bep, Cop) € . solves the steady-state fixed-
structure decentralized dynamic-compensation problem. Then for i=1,..., p there
exist (n+n, —ngy) x (n+ n,—n;;) non-negative-definite matrices Q;, P;, 0; and P,
such that 4, B; and C; are given by

Ay=T{A,~QZ,— L,P)GT (2.8)
B;=T,0,CTv.! (2.9)
Cu=—R;'B]P,Gf (2.10)

for some projective factorization G, M,, T, of 0, P;, and such that, with 1, = G T, the
following conditions are satisfied:

0=4,0;+ QAT+ V- QL0+ 7,050, (2.11)
0=ATP,+ P, A+ R, - PX,P,+ 1 PI,P1, (212
0=(A;—L,P)0;i+ 04— Z,P)"+ Q.0 — 7, Q.. Q7] (2.13)
0=(4,- Q=) P+ P4 —-QL)+PZIP —1]PLPr1, (2.14)
rank §, = rank P, =rank 0, B, =n, (2.15)
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Remark 2.1

Because of (2.7) the matrix 7, is idempotent, i.e. 7> = t;. This projection corre-
sponding to the ith subcontroller is an oblique projection (as opposed to an
orthogonal projection) since it is not necessarily symmetric. Furthermore, t; is given in
closed form by

= Qiﬁi(Q‘iﬁiY

where ()" denotes the (Drazin) group generalized inverse (see, for example, Campbell
and Meyer, 1979, p. 124).

3. Proposed algorithm
Sequential design algorithm

Step 1. Choose a starting point consisting of initial subcontroller designs;

Step 2. For a sequence {i,},, where iy e{l,...,p}, k=1,2,..., redesign subcon-
troller i, as an optimal fixed-order centralized controller for the plant and
remaining subcontrollers;

Step 3. Compute the cost J, of the current design and check J,—~J,_., for
convergence.

Note that the first two steps of the algorithm consist of (i) bringing suboptimal
subcontrollers ‘on line’ and (ii) iteratively refining each subcontroller. As discussed in
§ 1, the choice of a starting design for Step 1 can be obtained by a variety of existing
methods such as subsystem decomposition. As for subcontrolier refinement, note that
each subcontroller redesign procedure is equivalent to replacing a suboptimal
subcontroller with a subcontroller which is optimal with respect to the plant and
remaining subcontrollers.

Proposition 3.1

For a given starting design and redesign sequence {i, } > ; suppose that the optimal
projection equations can be solved for each k to yield the global minimum. Then
{J}& | is monotonically non-increasing and hence convergent,

Determining both a suitable starting point and redesign sequence for solvability
and attaining the decentralized global minimum remain areas for future research.
With regard to algorithms for solving the optimal projection equations for each
subcontrolier redesign procedure, details of proposed algorithms can be found in the
works of Hyland (1983, 1984) and Hyland and Bernstein (1985).

4. Application to interconnected flexible beams

To demonstrate the applicability of the main theorem and the sequential design
algorithm, we considecr a pair of simply supported Euler—Bernoulli flexible beams
interconnected by a spring (see the Figure). Each beam possesses one rate sensor and
one force actuator. Retaining two vibrational modes in each beam, we obtain the 8th-
order interconnected model

A, A B 0,
A=[ 11 12], Bl_—_[ ll], Bz::[ 4 1]
Ay Aj 04,1 B,,

Cx‘—'[Cu Ot;t]s C2=[0u4 sz]




Design of decentralized dynamic compensators

where
" 0
A= —y; — (kfw,;)(sin ne;)?
: 0
| —(k/wy)(sin nc;)(sin 2nc;)
i 0
{k/w,;)(sin nc;)(sin nc;)
Ay=
0
g(k/w“-)(sin nc)(sin 2nc;)

—sin 2naq,

S © o o

o= dl/Lls

Wy 0

—=2{iwy;  —(kfwy)(sin ne;)(sin 2nc;)
0 0
0 — gy — (k/wy)(sin 2nc,)?

0 0
(k/wy;)(sin mey)(sin 2nc;) O
0 0
(k/w,;)(sin 2mc;)(sin 2nc;) O

i#j
Cy=[0 sinms; 0 sin2xns;)

si=5§/L, ¢ =¢6/L;

1575

Wy

—2{,wy

In the above definitions, k is the spring constant, wy is the jth modal frequency of the
ith beam, {; is the damping ratio of the ith beam, L, is the length of the ith beam, and
d;, §; and ¢, are, respectively, the actuator, sensor and spring-connection coordinates
as measured from the left in the Figure. The chosen values are
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k=10

wu=1, wy=4, {=0005, Li=1, i=1,2
4, =03, § =065 ¢ =06
6, =08, §,=02 =04

In addition, weighting and intensity matrices are chosen to be

1o 1 o 11 o 1 0
R, = block-diagonal , , ,
_0 VI 0 l/wz:d __0 lw,, 0 Vaw,,

R2=R3=0'l12

[0 o]0 o]Jo o]Jo o
Vo = block-diagonal , ) ;

| 0 1 0 1 0 L[]0 1
hW=V=011,

For this problem the open-loop cost was evaluated and the centralized 8th-order
LQG design was obtained to provide a baseline. To provide a starting point for the
sequential design algorithm, a pair of 4th-order LQG controllers were designed for
each beam separately ignoring the interconnection, i.e. setting & =0. The optimal
projection equations were then utilized to iteratively refine each subcontroller. The
results are summarized in the Table.

Design Cost
Open loop 1635
Centralized LQG
n.=8 1999
Suboptimal decentralized
n,=n,=4 5943
Redesign subcontroiler 2 2819
Redesign subcontroller 1 23-29
Redesign subcontroller 2 2304
Redesign subcontroller 1 2225 -
Redesign subcontroller 2 2194
Redesign subcontroller 1 2186
Redesign subcontroller 2 2181
Redesign subcontroller 1 2179
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1. Imntroduction

Because of implementation constraints, cost, and reliability considerations, a decentralized
controller architecture is often required for controlling large scale systems. Furthermore, such
controllers must be robust to variations in plant parameters. The present paper addresses both
of these concerns within the context of a robust decentralized theory for continuous-time static

controllers.

The approach to controller design considered herein involves optimizing closed-loop perfor-
mance with respect to the feedback gains. This approach to output feedback was studied for
centralized controllers in [8,9] and for decentralized controllers in [10]. An interesting feature of
[9,10] is the recognition of an oblique projection (idempotent matrix) which allows the necessary
conditions to be written in terms of a modified Riccati equation. When the problem is specialized
to full-state feedback, the projection becomes the identity and the modified Riccati equation coin-
cides with the standard Riccati equation of LQR theory. It should be pointed out that this oblique
projection is distinct from the oblique projection arising in dynamic compensation ([7]). A unified
treatment of the static/dynamic (nonstrictly proper) centralized control problem involving both

projections is given in [2].

The present paper goes beyond earlier work by deriving sufficient conditions for robust stability
and performance with respect to variations in the plant parameters. Although plant disturbances
are represented in the usual stochastic manner by means of additive white noise, uncertainty in the
plant dynamics is modeled deterministically by means of constant structured parameter variations
within bounded sets. Thus, for example, the dynamics matrix A is replaced by A + 37 _, 0 Ay,
where o, is a constant uncertain parameter assumed only to lie within the interval [—ay, ai] but
otherwise unknown, and Ay is a fixed matrix denoting the structure of the uncertain parameter
0 as 1t appears in the nominal dynamics matrix A. The system performance is defined to be the
worst-case value over the class of parameter uncertainties of a quadratic criterion averaged over the

disturbance statistics.

Since the closed-loop performance can be written in terms of the second-moment matrix, a
performance bound over the class of uncertain parameters can be obtained by bounding the state
covariance. The key to bounding the state covariance is to replace the usual Lyapunov equation for
the second-moment matrix by a modified Lyapunov equation. In the present paper the modified

Lyapunov equation is constructed by adding two additional terms. The first term corresponds to a




uniform right shift of the open-loop dynamics. As is well known ([1]), such a shift may arise from
an exponential performance weighting and leads to a uniform stability margin for the closed-loop
system. In order to guarantee robustness with respect to specified structured parameter variations,
however, an additional term of the form AxQAT is required. Such terms arise naturally in systems
with multiplicative white noise; see [3,4] and the references therein for further details. The expo-
nential cost weighting and multiplicative noise interpretations for the uncertainty bound have no
bearing in the present paper, however, since parameter variations are modeled deterministically as

constant variations within bounded sets.

Having bounded the state covariance over the class of parameter uncertainties, the worst-case
performaace can thus be bounded in terms of the solution of the modified Lyapunov equation. The
performance bound can be viewed as an auziliary cost and thus leads to the Auxiliary Minimization
Problem: Minimize the performance bound while satisfying the modified Lyapunov equation. The
nice feature of the auxiliary problem is that necessary conditions for optimality of the performance
bound now serve as sufficient conditions for robust performance in the original problem. Thus our
approach seeks to rectify one of the principal drawbacks of necessity theory, namely, guarantees
of stability and performance. Furthermore, it should be noted that if nurerical solution of the
optimality conditions yields a local extremal which is not the global optimum, then robust stability
and performance are still guaranteed, although the performance of the extremal may not be as
good as the performance provided by the global minimum. Philosophically, the overall approach
of control design for a performance bound is related to guaranteed cost control ([6]). We note,
however, that the bound utilized in (6] is nondifferentiable, which precludes the approach of the

present paper.

A further extension of previous approaches considered in the present paper involves the types
of feedback loops considered. Specifically, the usual approach to static output feedback involves
nonnoisy measurements and weighted controls, while the dual problem involves feeding back noisy
measurements to unweighted controls. This situation leads to an additional projection ([2]) which
is dual to the projection discussed in [9,10]. The inclusion of the dual case now leads to a pair of

modified Riccati equations coupled by both the uncertainty bounds and the oblique projections.

In addition to the two types of loops discussed above, one may wish to consider the two
remaining cases, namely, feeding back noisy measurements to weighted controls and feeding back

nonnoisy measurements to unweighted controls. It is easy to show, however, that the former case




leads to an undefined (i.e., infinite) value for the performance while the latter case is highly singular

and thus will not be treated here.

Finally, the scope of the present paper is limited to the development of sufficient conditions for
robust decentralized output feedback. Numerical solution of these equations can be carried out by
extending available algorithms for centralized output feedback. Numerical algorithms for solving a

single modified Riccati equation in the absence of uncertainty bounds are discussed in [10].

2. Notation and Definitions

3

R,R"™** IR",IE real numbers, r X s real numbers, IR"*!, expectation .

L, ()T r x r identity, transpose

8, ® Kronecker sum, Kronecker product ([5]) l

3" r X r symmetric matrices

IN" r X r symmetric nonnegative-definite matrices

|| 4 r X r symmetric positive-definite matrices l

2y < 2, Z3—Z; e IN", Z;,des'

Zy < 24 Z3-2,€P, 72,,Z2,€8"

asymptotically matrix with eigenvalues in open left half plane l
stable matrix

n,r,s,p positive integers '

1,5,k indices,1=1,...,r, j=1,...,8, k=1,...,p

mq, & positive integers, ¢=1,...,r

My, &y . positive integers, j=1,...,s '

z n-dimensional vector

u;, % m,-,&-dimensiona.l vectors, 1=1,...,r '

@y,Y5 mj, {;-dimensional vectors, 7 =1,...,s

AAA n X n matrices )

Bi,AB;; C; n X m; matrices; bxn matrices, 1=1,...,r '

B,-;C,-,AC,- n X M, matrices; £; X n matrices, j=1,...,s

A n X n matrices, k=1,...p

B n X m; matrices, 1=1,...,r, k=1,...,p I

Cjx £; X n matrices, j=1,...,8, k=1,...,p

D¢ m,-xi,-ma.trices, i=1,...,r l

E.; m; X £; matrices, j=1,...,3

a positive number

Ay A+ %I, I

g positive number, k=1,...,p

Tk alfe, k=1,...,p .

Tk real number, k=1,...,p

wo(t), w;(t) n-dimensional, ¢,-dimensional white noise, j=1,...,s '

|




\

Vo, V5 ' intensities of wo,w;; Vo €IN", V; e P5, j=1,...,s

Vos n X £, cross intensity of wo,w;, j=1,...,8

Ro, R; state and control weightings; Ro € IN®, R, e P™, i=1,...,r
Ros n X m; cross weighting; Ro - R, R7'RE >0, i=1,...,r

AA AA+ Y ABDLCi+ T}, B;E;AC;

w(t) wo(t) + 27, B;E.;jw;(t)

}.3 Ro + Z:=1[R0€Dciéi + é?DZ:Rg‘- + é?DZiRiDciéi]

‘7 Vo + 2;=1[Vo,'E3;-é}. + B,-E,,-Vog + éjEchjEz;éf

For arbitrary n X n Q, P define:

P P
Ru& R+ WBLPBi, Pui2BTP+RL+> mBLPAy, i=1,...,r

=1 k=1
} 4 )4
Voi V54 ) 1CixQCh, Qui 2QCT +Vo; + > mArQCh, j=1,...,0.
k=1 k=1

3. Robust Stability and Performance Problem

In this section we state the Robust Stability and Performance Problem along with related

notation for later use. Let
UCR™™ x IR™*™ x...x R"™™ x RU*" x  x [RE*"

denote the set of uncertain perturbations (AA,ABy,...,AB,,AC,,...,AC,) of the nominal sys-

tem matrices A, By,...,B,,C,,...,C,.

Robust Stability and Performance Problem. Determine (D.y,...,D.,, E.1,..., E.,)
such that the closed-loop system consisting of the nth-order controlled and disturbed plant
z(t) = (A+ AA)z(t) + Z(B,- + AB;)ui(t) + z Bia;(t) + wolt), te0,00), (3.1)
=1 j=1

nonnoisy and noisy measurements

§i(t) =Ciz(t), i=1,...,r, (3.2)
yj(t) = (CJ + AC,‘)Z(‘) + wj(t)! J=1,...,s, (33)

and static output feedback controller

ui(t) = Diil(t), i=1,...,r, (3.4)

4

A | —



ﬁJ(t) = Ecjyj(t), J =1,...,s, (35)
is asymptotically stable for all variations in U and the performance criterion

J(Dclx' . ,Dcn Eclr- . 7Eca) é

sup lim sup IE(z7 (t) Roz(t) + 2 i 27 (t) Rosus(t) + i uf () Raui(t)] &)

i=1 s=1

is minimized.

For each controller (D.y,..., D¢, Ea,-. ., E.,) and variation in U, the closed-loop system (3.1)-
(3.5) is given by
#(t) = (A + AA)z(t) + @(t), ¢t e [0,00), (3.7)

where ®(t) is white noise with intensity V € IN™.

Remark 3.1. In the case A4, AB;,AC; =0 it is well known that stabilizability is related to
the existence of fixed modes ([11]). When plant uncertainties are present the problem is, of course,
far more complex. In the present paper sufficient conditions for robust stability are obtained as a

consequence of the existence of robust performance bounds.

Remark 3.2. Note that the controller architecture is quite general in that it includes two
distinctly different types of decentralized loops. The first type, indexed by s = 1,...,r, involves
feeding back nonnoisy measurements to weighted controls. This is the standard setting in the
optimal output-feedback literature ([8-10]). In addition, we include the dual situation, indexed by
7 =1,...,s, which involves feeding back noisy measurements to unweighted controls. The case in
which only one type of loop is present can be formally recovered from our results by ignoring B;
and C; or B; and C; as required. As noted in Section 1, noisy measurements cannot be fed back
to weighted controls via static control, while feeding back nonnoisy measurements to unweighted

controls is a singular problem.

Remark 3.3. Note that the problem statement is restrictive in the sense that uncertainties
in both the control and observation matrices are not permitted within the same feedback loop.
Although it is indeed possible to permit such simultaneous uncertainties, the development is con-

siderably more complex and hence is not treated here.

Remark 3.4. The cost functional (3.6) is identical to the LQG criterion (usually stated in

terms of an averaged integral) with the exception of the supremum for evaluating worst case over

u.




‘

4. Sufficient Conditions for Robust Stability and Performance

In practice, steady-state performance is only of interest when the closed-loop system (3.7)
is stable over U. The following result, which expresses the performance in terms of the state

covariance, is immediate.

Lemma 4.1. Let (D.,,..., D, E,,..., E.,) be given and suppose the system (3.7) is stable

for all variations in {. Then
J(Dd,...,D",Ecl,...,Ec,)=sxap tr QAzfi, (4.1)
where Q , ; £ lim;_. o, [E[z(t)z7 ()] € IN" is the unique solution to

0=(A+A8A4)Q;+Qui(A+AA)T+V. (4.2)

Remark 4.1. When U is compact, “sup” in (4.1) can be replaced by “max”.

We now seek upper bounds for J(D,,,...,Dery Ee1,...,E.). Our assumptions allow us to

obtain robust stability as a consequence of robust performance.

Theorem 4.1. Let 2: IN* x R™*& x  IR™*& x R™M Xl x  x R™*% — §" be such
that

AAQ +QAAT < 0(Q,Dety. .., Dery Eery- .-, Bed),
(AA,AB;,...,AB,,AC;,...,AC.) el,

(@, De1,..., Doy By ..., Bo)) € IN® x R™ %A 5 x R™ & x R™1%4 x| x m"‘-*‘z. )
4.3

Furthermore, for given (D.y, ..., Der, Ee1,- - ., E.,) suppose there exists Q € IN® satisfying

0=AQ+QAT +1(Q,Dcr,..-, Depy Eery - Boa) + V. ‘(4.4)

-’

Then the pair (A + AA, V%) is stabilizable for all variations in U if and only if A + AA is asymp-

totically stable for all variations in U. In this case,

QaisQ (4.5)
where Q , ; satisfies (4.2), and
J(Dety... Doy, Bet,y..., Bea) < tr QR. (4.6)
6




Proof. For all variations in U, (4.4) is equivalent to
0=(A+AA)Q+Q(A+2A)T +8(Q,Dc1,...,Der,Ecr,..., Ecay AA) + V, (4.7)

where
Q(Q’ Dch° .. 1DenEclr' . aEcn A‘x) é n(Q’ Dcl:- .. sDcn Ecl) s :Ecl) - (AA‘.Q + QA‘ZT)

Note that by (4.3), #(-) > O for all variations in U. If (A+ AA,V3) is stabilizable for all variations
in U, it follows from Theorem 3.6 of [12] that (A+AA~, [‘7+¢(Q, D.,,...,D.,E.,...,E.,, AA)]%)
is stabilizable for all variations in . Hence Lemma 12.2 of [12] implies A+ AA is asymptotically

stable for all variations in Y. The converse is immediate. Next, substracting (4.2) from (4.7) yields
0=(A+A4A)(Q~ Qa2 +(@-Qa:)(A+8A)T +8(Q,Der,-.., Dery ety - .., Beoy AA),
or, equivalently, (since A+AAis asymptotically stable)
Q-Qui= /o = eA+8408(Q Doy,... Doy, Eer, ..., Eeuy AA)eA+8A) gt > o,
which implies (4.5). Finally, (4.5) and (4.1) yield (4.6). O

Remark 4.2. I V is positive definite then the stabilizability hypothesis of Theorem 4.1 is

automatically satisfied for all variations in U.
5. Uncertainty Structure and the Quadratic Lyapunov Bound

The uncertainty set U is assumed to be of the form

U={(AAAB,,...,AB,,AC,,...,AC,) :

P P
AA= deAk, AB; = deB.-k, i=1,...,r

k=1 k=1 (5.1)
P : P
AC,-:EO’;;C,*, J=1,...,s, Zd:/aisl}’
k=1 k=1

where, for k=1,...,p: (Ak, Biky.--, BriyCik, - .-,Cex) are fixed matrices denoting the structure
of the parametric uncertainty; oy is a given uncertainty bound; and ¢, is an uncertain parameter.
Note that the uncertain parameters o, are assumed to lie in a specified ellipsoidal region in IRP.
The closed-loop system thus has structured uncertainty of the form

’ ;
AA= Z ox Ay, (5.2)
k=1

7




where . -
11‘ 2 Ar + E B,'),D“'é,' + Z B_,'E”'C,‘k, k=1,...,p. (5.3)
=1 =1
To obtain explicit gain expressions for (D.y,...,Der, Ee,. .., E:,) We assume that, for each

k € {1,...,p}, at most one of the matrices Byy,..., Bk, Cik,-..,Cek is nonzero. Note that this
assumption does not preclude the treatment of uncertainties in the input and output matrices. It

requires only that such uncertainties be modeled as uncorrelated.

Given the structure of U defined by (5.1), the bound (2 satisfying (4.3) can now be specified.

In the following result Q@ denotes an arbitrary element of IN®, not necessarily a solution of (4.4).

Proposition 5.1. Let a be an arbitrary positive scalar. Then the function

P
2(Q,Dars..., Do, By, Ee) =aQ + ™1 Y ol A, QAT (5.4)
k=1

satisfies (4.3) with U given by (5.1).

Proof. Note that

p L -~
0< Y [(etar/an)s - (ar/a?)AL]Q[(edor/ak) I, - (ar/ad)Ai]”
k=lp , ) ) , ) )
=a) (0}/o})Q+a 1) ol AuQAT - Y ou(AQ + QAT),
k=1 k=1 k=1

which yields (4.3). O

Remark 5.1. Note that the bound 2 given by (5.4) consists of two distinct terms. The first
term a@ can be thought of as arising from an exponential time weighting of the cost, or, equivalently,
from a uniform right shift of the open-loop dynamics ([1]). The second term a~* 3"%_, a2 A,QAT
arises naturally from a multiplicative white noise model ([3,4]). Such interpretations have no bearing
on the results obtained here since only the bound {2 defined by (5.4) is required. Note that the

bound is valid for all positive a.

Remark 5.2. The conservatism of the bound (5.4) is difficult to predict for two reasons. First,
the overbounding (4.3) holds with respect to the partial ordering of the nonnegative-definite matri-
ces for which no scalar measure of conservatism is available. And, second, the bound (4.3) is required
to hold for all nonnegative-definite matrices Q and feedback gains (D.,,..., Der, Ee1,- .., Ec,). The
conservatism will thus depend upon the actual values of @, D.y,..., D, Ee1,-.., E., determined
by solving (4.4).




8. The Auxiliary Minimization Problem and Necessary Conditions for Optimality

Rather than minimizing the actual cost (3.6), we shall consider the upper bound (4.6). This
leads to the following problem.

Auxiliary Minimization Problem. Determine (Q, D.1,...,D.,, E.s,..., E.,) which mini-

mizes

J(Q’Dch---;Danelv--,Ecn) é tr Qﬁ (6.1)
subject to
Q e IN", (6.2)
P
0=A.Q+QAT + > wAQAL +V. (6.3)
k=1

The relationship between the Auxiliary Minimization Problem and the Robust Stability and

Performance Problem is straightforward as shown by the following observation.
Proposition 6.1. Suppose (Q, D.y,..., D, E.1,. .., E.,) satisfies (6.2)~(6.4). Then
(A + AA, V1) is stabilizable for all variations in U (6.4)
if and only if A + AA is asymptotically stable for all variations in U. In this case,

J(Dclr' .. JDc") Ecl" ey Eca) S J(Q’ Dcl)' .. aDanclv e )Ecc)' (65)

Proof. With 12 given by (5.4), Proposition 5.1 implies that (4.3) is satisfied. Since the hy-
potheses of Theorem 4.1 are satisfied, robust stability with performance bound (4.6) is guaranteed.

Note that with definition (6.1), (6.5) is merely a restatement of (4.6). O

The derivation of the necessary conditions for the Auxiliary Minimization Problem is based
' upon the Fritz John form of the Lagrange multiplier theorem.* Rigorous application of this tech-
nique requires that (@, D.1,..., D, E.1,..., E.,) be restricted to the open set

= {(Q,D.1,...,D¢p, Ey,...,E,): Q€IP™ and A is asymptotically stable},

* The Kuhn-Tucker theorem requires a priori verification of a constraint qualification which is
difficult to confirm in the present context. The Fritz John version is less restrictive and hence more

suitable.




where

1 4
A2A,0A.+) 1AL ® AL
k=1
The requirement (Q, D.,,...,D.,, E.s,...,E.;,) € § implies that Q and its nonnegative-definite

dual P are unique solutions to the modified Lyapunov equations (6.3) and

P
0=AZP+PAs+)_ mATPAc+R. (6.6)
k=1

An additional technical requirement is that (Q, D.y,...,Der, Ec1,. - -, Ecs) be confined to the set
S+ é {(Qchlr-nDan.:l,---,Eca) €Ss: CA'.Qé,T > 0, t= 1,...,r,
mdé}'Péj>0, j=1,...,8}.

The positive definiteness conditions in the definition of $+ hold when C; and B; have full row and
column rank, respectively, and Q and P are positive definite. As can be seen from the proof of
Theorem 6.1 these conditions imply the existence of the projections v; and ¥; corresponding to the

two distinct types of feedback loops. Note that $* is open.

Remark 6.1. As pointed out in Remark 3.1, the set § may be empty in which case, of course,
our results do not apply. As will be seen, however, our approach does not require explicit verification

that § be nonempty since robust stability is obtained as a consequence of robust performance.

Remark 6.2. As will be seen, the constraint (Q, D.1,...,Dery Ee1,...,E:;) € S need not
be verified in practice and is not required for either robust stability or robust performance since
Proposition 6.1 shows that only (6.2)-(6.4) are needed. Rather, the set S constitutes sufficient
conditions under which the Lagrange multiplier technique is applicable to the Auxiliary Minimiza-
tion Problem. Specifically, the condition Q > O replaces (6.2) by an open set constraint, while the
asymptotic stability of A serves as a normality condition which further implies that the dual P of

Q is nonnegative definite.
Necessary conditions for the Auxiliary Minimization Problem can now be obtained.

Theorem 6.1. If (Q,D.1,...,De,Ecs,...,E;,) € §t solves the Auxiliary Minimization
Problem with U given by (5.1), then there exist Q, P € IN" such that D,,..., D, E.,,..., E.,

are given by

Dui = —RPuQCT(CQCT)™Y, i=1,...,1, (6.7)
E.;=—(BTPB,)"'BTPQ.;V5', i=1,...,s, (6.8)
10




- and such that Q, P satisfy

0=(Aa =) BiRZ'Puvi)Q+Q(Aa - Y BiR;Puiti)T + Vo

=1 =1
p r r
+ Z T(Ax — Z B R Paivi)Q (A - Z BixR;'Pov;)T
k- =1 =1
= Z QOJ Qg_-, + Z VJ.LQGJ aJlQGJ Vil (69)
=1 =1

= (Aq - Eu,qa, V;'C;)TP + P(A, —ZV‘,QQJ 1C,)+ Ro

J-l i=1
+ Z (A - Z V;Qa; a:lCJk)TP(Ak - ZVJQGJ Cjx)
i=1 =1
- ZP,ﬁR;..lP.,,- + Z vI PIR:Poiv, (6.10)
s=1 =1
2QCF(CiQCN6;, v 2I.-v, i=1,...,r, (6.11)
0; 2 Bj(BTPB;)'BTP, 0;12I.-0;, j=1,...,s (6.12)

Furthermore, the auxiliary cost is given by
J(Q’ Dg,..., Dey, Ecly Ecn) =
TpT p-1p p-1 -1 (6.13)
tr[Q(Ro + Zu PIRZR.R;}Poiv; — 2R4 R Poity)).
s=1

Conversely, if there exist @,P € IN" satisfying (6.9) and (6.10) then Q satisfies (6.3) with
(De1y- .-, Dery Eey,. ..., Ece) given by (6.7) and (6.8), and J(Q, Dey, ..., Der, Ee1, - .-, Ecs) is given
by (6.13).

Proof. To optimize (6.1) over the open set S$*, subject to the constraint (6.3), form the
Lagrangian

. .
L(Q,Dar,. .., Degy ey, Bet) 2 eDQR+ (AQ + QAT + ) meAxQAT + V)P,
k=1

where the Lagrange multipliers A > 0 and P € IR"*" are not both zero. Setting d£/9Q =0, A=0
implies P = 0O since A is asymptotically stable. Hence, without loss of generality set A = 1. Thus
the stationarity conditions are given by

aL

3G =ATP+PA, + Z wATPA,+ R=0, (6.14)

k=1

11




2L RD.GQET +PuQET =0, i=1,...r, (6.15)
8D

2L _ BTPBE. Vi + BTPQ.; =0, j=1,...,s. (6.16)
aEc" I

Since (Q, De1s -y Ders Ber, - .-, Eea) € $*, CiQCT and BT PB; are invertible and hence (6.15)
and (6.16) imply (6.7) and (6.8). Finally, (6.9) and (6.10) are equivalent to (6.3) and (6.6). O

Remark 6.3. Several special cases can be recovered formally from Theorem 6.1. For example,
when the control weighting is nonsingular and the measurement noise is zero, i.e., when 4, and y;
are absent for i = 1,...,r, delete (6.8) and set #; = 0 in (6.9). In this case the last two terms in
(6.9) can be deleted. Deleting also the uncertainty terms Ax, Bik, Cjk yields the results of [10]
with the added features of correlated plant/measurement noise (Vo,) and cross weighting (Ry;).
Furthermore, assuming a centralized structure for the static controller, i.e., r = 1, yields the usual

static output feedback result ([8,9]).
7. Sufficient Conditions for Robust Stability and Performance

We now combine Proposition 6.1 and Theorem 6.1 to obtain sufficient conditions for robust

stability and performance.

Theorem 7.1. Suppose there exist Q,P € IN" satisfying (6.9) and (6.10). Then with
(Ders-.- s Dery Een,. ..., Ee,) given by (6.6) and (6.7), (A + AA,V%,) is stabilizable for all vari-
ations in Y if and only if A + AA is asymptotically stable for all variations in ¥. In this case the

performance of the closed-loop system satisfies the bound

» ,

J(De1,...,Dery Eer,.. ., Bed) < tr[Q(Ro + Z vIPLR;  RiR; Pavi — 2Ro; R; Poivi)]. (7.1)
=1

Proof. The converse of Theorem 6.1 shows that Q satisfies (6.3) with (D.y,...,D,,,

E.,...,E.,) given by (6.7) and (6.8). Hence, with the stabilizability assumption (6.4), Propo-

sition 6.1 implies robust stability and performance. O

Remark 7.1. The application of Theorem 7.1 in practice requires 1) numerical solution of
(6.9) and (6.10), and 2) verification of the stabilizability hypothesis. No other assumptions need
be verified in applying this result.

12




8. Concluding Remarks -

We have developed a theory of robust decentralized output feedback via static control. The
development permits the treatment of noisy and nonnoisy measurements, weighted and unweighted
controls, and structured real-valued parameter uncertainties in the plant matrices. The theory
provides a robustification of results given in [8-10] for both centralized and decentralized optimal
output feedback. The theory is constructive in nature rather than existential. Specifically, the
main result, Theorem 7.1, involves a coupled pair of modified Riccati equations (6.9), {6.10) whose
solutions, when they exist, are used to explicitly construct feedback gains (6.7), (6.8) which are
guaranteed to provide both robust stability and performance. Future research is required for
evaluating the conservativeness of the theory. The numerical algorithms developed in (10] provide

a starting point in this regard.
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The Optimal Projection Equations for Reduced-Order
State Estimation: The Singular Measurement
Noise Case
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Abstract—The optimal projection equations for reduced-order state
estimation are generalized (o aliow for singular (i.e., colored) measure-
ment noise. The noisy and noise-free measurements serve as inputs to
dynamic and static estimstors, respectively. The optimal solution is
charscterized by necessary conditions which invoive a pair of oblique
projections corresponding (0 reduced estimalor order and singular
measurement noise intensity.

1. INTRUDUCTION

It has recently been shown [1] that sofutions to the steady-state reduced-
order state-estimation problem can be characterized by means of a system
of modified Riccati and Lyapunov equations coupled by an oblique
projection. As in classical Kalman filter theory [2' however, this solution
is based on the assumption that all measurements are corrupted by white
noise. When the measurement noise is singular (i.e., colored), the optimal
solution cannot be applied since the filter gains are given in terms of the
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inverse of the noise intensity matrix. Hence, it is not surprising that a
sizable body of literature has been devuwed to the singular measurement
noise problem in both continuous and discrete time [2]-(14]. For an
overview of stochastic observer theory, see [15].

Much of the continuous-time singular estimation literature attempts to
overcome the noise singularity by introducing mew measurements
obtained by differentiating noise-free measurements. The present note
complements these results in the following way. For the available noisy
and noise-frec measurements we simultanecusly design a reduced-order
dynamic estimator for the noisy measurements and a static estimator for
the noise-free measurements. We are not concerned here with the
question of how the measurements are generated (e.g., via successive

_ differentiation). Rather, our goal is to develop & unified dynamic/static

estimation design theory which permits full utilization of both noisy and
noise-frec measurements. Application of these results to previously
proposed approaches to singular estimation involving differentiation and
transformation should be an interesting area for future research.

The results given herein directly gencralize the results obtained in [1].
Specifically, the modified Riccati/Lyapunov equations are now coupled
by a pair of oblique projections. As in [1] the requirement for reduced
estimator order gives rise to the projection

1= QP(QP)’

where ( )* denotes group generalized inverse and @ and P are rank-
deficient nonnegative-definite matrices analogous to the controllability
and cbservability Gramians of the estimator. In addition, the presence of
noise-free measurements

(1.1)

(1) =Cyx(r) 1.2)

leads to the projection
n=0CH(C:0C)'C;

where Q is the steady-state error covariance. The contribution of the
present note is a concise, unified statement of the optimality conditions in
a form which clearly displays the role of the oblique projections 7, and r;
in explicitly characterizing optimal static/dynamic (nonstrictly proper)
estimators. An additional featire of the present note is the presence of
state- and measurement-dependent white noise in the plant modei. This
model has been studied in a state-estimator context in {16]~[18] and has
been justified as an approach to robustness in [19]-{22].

In Section III of the note, we consider the case in which the noisy and
noise-free measurements are fed to the dynamic and static estimators,
respectively. In Section IV, we note that feeding the noisy measurements
to the static estimator results in an ill-posed problem, and we consider the
general case in which the noise-free measurements are fed to both the
static and dynamic estimators. Optimality conditions now lead to the
interesting disjointness condition

(.3

o=f;1’| (I'4)
concerning the relationship between the static and dynamic estimators.
The meaning of (1.4) for proposed singular estimation schemes will be
explored in future papers.

The goal of this note is confined to a rigorous development of necessary
conditions for the optimal estimation problem. In support of this aim it
should be noted that the usefulness of necessary conditions in optimization
and optimal control has been amply demonstrated by classical results such
as the maximum principle and Euler-Lagrange theory. For practical
purposes, necessary conditions are largely free from restrictive special
assumptions which invariably accompany sufficiency theory. Most
importantly, success in addressing the problems of existence, sufficiency
and giobal optimality is far more likely after the full elucidation of the
necessary conditions has been achieved. Indeed, sufficiency conditions
are often obtained by strengthening necessary conditions by means of
additional restrictive assumptions.

Even without a complete resolution of questions pertaining to existence

0018-9286/87/1200-1135%01.00 © 1987 IEEE
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and sufficiency, the necessary conditions fulfill several immediate needs. II. PROBLEM STATEMENT AND MAIN THEOREM
Specifically, the structure of these conditions provides insight into the
properties of the solution arising from optimality considerations. This has  Reduced-Order State-Estimation Problem
been demonstrated for the closely related problem of reduced-order
modeling for which local minima are characterized in terms of an Given the nth-order observed system
eigensystem decomposition {23]. Potentially more useful than insight for
ical applications are for . ) ional
algorithms which avoid traditional gradient search methods. Thus far, two )=\ A+ ﬁ u()A, | () + wo(0), a.n
distinct algorithms have been developed, namely, an iterative method (=t
which exploits the structure of the oblique projection [23] and a homotopy
algorithm which eliminates the need for eigensystem calculations and
provides the means for attaining global optimality {24]. For computational )= C+ t vi()Cy, | x(t) + wi (1), G2
purposes it should also be noted that under an existence assumption the =)
necessary conditions are guaranteed to possess a solution to the problem, ) .
while sufficient conditions may fail in this regard. »1(0) = Cix(t), 3.3)
II. NOTATION AND DEFINITIONS
R, R R, X real numbers, 7 x s real matrices, R7*!, expectation
L, On () n X n identity, transpose, group generalized inverse [25, p. 124]
D, Kronecker sum, Kronecker product {26)
rZ trace of a square matrix Z
T, I, — 1,7 €ER>»
nh,bL,n,p,q positive integers, 1 < n, < n
A n+n,
X, Xe n, n~dimensional vectors !
Fis Y2s Ve 1y, bk, g-dimensional vectors
A ,A; C,Cy n X n matrices; /; X n matrices, { = 1, -, p
C; L % n matrix
A, B,, C,, D, ne X R, Me X i, q X N, ¢ X I matrices )
vi(f) unit variance white noise, / = |, -+, p
wo(1), wi(r) n-dimensional, /;-dimensional white noise processes
Vo n X n nonnegative-definite intensity of wo(f)
4 &, x I, positive-definite intensity of w,(¢)
Vor nr x I cross intensity of wy(f), w,(f)
R g X q positive-definite matrix
L g X n matrix
-
A ) A; A 0 A 0 iml, oo l
L B -
K My X /; matrix
) - i
A A 0
L.B.C‘.«-I(C, A,
w(r) wo(f) l
B,w(1)
14 Vo Va BT '
B.VI B,V,BI
R LTRL-LTRD,C;~C]DIRL+CIDIRD,C; -LTRC,+CIDIRC, l
-CIRL+CIRD,C; CTRC,
asymptotically stable matrix matrix with eigenvalues in open left-half plane
nonnegative-semisimple matrix semisimple (nondefective) matrix with nonnegative eigenvalues
nonnegative-definite matrix symmetric matrix with nonnegative eigenvalues
positive-definite matrix symmetric matrix with positive eigenvalues.
For agbitrary n x n Q, Q define: where ¢ € [0, ), design an n,th-order state estimator l ]
V., & V+ 2 c(Q+0)CT, 2,(0)=Ax,(1) + B,y (8), Q4 ]
- , 2= Cox(1)+ Dy (e) 0.9 ;
o QCT+ V.‘+t AJ(Q"'Q)CE‘ hich minimizes the timati Keri R I 4
=] K
- T -
Ag & A-QV.'C. J(A,. B,,C,, D,) & 'll_lg B(Lx() =y, (N"RILX(t)~ye()).  Q.6) '
p
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To guarantee that J is finite, assume that A4 is asymptotically stable and
consider the set of asymptotically stable reduced-order (i.e., ﬁxed-order)
estimators

A {(A., B,,C,.D,): A, is asymptotically “lblc).

Since the value of J is independent of the internal realization of the
transfer function corresponding to (3.4) and (3.5), without loss of
generality we further restrict our attention to the set of admissible
estimators

A* & {(A,, B, C.,D,) € A:(A,, B,) is controilable

and (A,, C,) is observable}.

An additional technical requirement is that (4., B,, C,, D,) be confined to
the set

A’ é {(An Bn Cn D,) € /" H

Cy(Q; - Q1 Q; ' OT,)CT is positive defiaite},
where
o Qn x#
g [ r Q;] ex
satisfies

0=A0+0A™+ 3 A QAT+ P

im

and @, is invertible since (A,, B,) is controllable. The positive
definiteness condition holds when C; has full row rank and { is positive
definite. As can be seen from the proof of Theorem 3.1, this condition
implies the existence of the projection 7, defined below.

The following factorization lemma is needed for the statement of the
main result.

Lemma 3.1: Snpposenan P are nonnegative definite. Then OF
is nonnegative semisimple. If, in addition, rank 3P = n,, then there exist
n, x n G, " and n, X n, invertible M such that

OPF=G™™T, (3.78)

rGT=1,,. (3.7

Furthermore, G, M, and T are unique modulo a change of basis in
fre.
Proof: The result follows from [27, Theorem 6.2.5]. 0
Since QP is semisimple (diagonalizable) it has a group generalized
inverse (0P)" = G'TM-'T" and

T, & QP(OPY =G'T (3.8)

is an obligue projection.

Theorem 3.1: Suppose A is asymptotically stable and (A,, B,, C,, D,)
€ A* solves the reduced-order state-estimation problem. Then there
exist 7 X n nonnegative-definite matrices Q, §, and P such that A,, B,,
C,. and D, are given by

A, =T(A-~- Q,V C.)G 3.9)
B=rQv,.', (3.10)

C,=L7,GT, (3.11)

) D,=LQC(C,OCD! (.12)

and such that Q, O, and B satisfy

0=40+Qa™+$ 4(Q+ QAT+ V- Qv QT+ L0V QI L,

3.13)
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0=A0+0AT+Q.V 'QT-n, QV, ' QI],, (3.14)
0=AZP+PAG+1] L'RLry ~71 7] L'RL7,,71,, (3.19)
rank O=rank P=rank QP =n, (3.16)

where
n & QCN(G,EC)-'C,. (ERY))

Remark 3.1: Several special cases can be recovered from Theorem
3.1. For example, when the observation noise is nonsingular, i.e., when
y1 is absent, delete (3.12) and set 7, = O [22]). Deleting also the
multiplicative noise terms yields the Main Theorem of [1).

- Specializing Theorem 3.1 to the full-order case 1, = n reveals that the
Lyapunov equation for £ is superfluous. In this case G = I'-! and thus G
= T = J, without loss of generality.

Corollary 3.1: Assume n, = n, A is asymptotically stable and (A,, B,,
C., D.) € A* solves the full-order state-estimation problem. Then there
exist 7 X n nonnegative-definite matrices Q and O such that A4,, B,, C,,
D, are given by

A.=A-QV:'C, (3.18)
B=QV;', (3.19)
C.=L7,, (3.20)
D,=LQCI(C,oCD)"! (3.21)
and such that O and @ satisfy
0=AQ+04 f+§ AQ+DAT+V,-QV'0T. (.22
(L3}
0=A40+0AT+Q,V; 'Qr. (.23)
Remark 3.2: Note that by setting 4, = 0,C; = 0,i = 1, -*-, p, it

follows that (3.22) and (3.23) are decoupled and (3.23) is superfiuous. To
recover the standard Kalman filter which involves nonsingular noise, set
C; = 0, delete (3.21) and define 7, = 0.

IV. ADDITIONAL ESTIMATOR PATHS

We now consider the more general estimator

X (1) = Ax (1) + By (1) + Kya (1), “.1)

Y(8)= Cox, + D, ya(1) + Ry, (1) “.2)
involving the additional gains K and K.

Note that the additional path introduced in (4.2) implies that J is infinite
and thus the problem is meaningless. Hence, set £ = 0, and consider the

_ additional path introduced by (4.1), i.e., filtering the noise-free measure-

ml'l‘;lacing (3.4) by (4.1) and optimizing with respect to X yields
0=GPQC], 4.3)
which implies
O=77;. 4.4

Using (4.3), Q0 = nnQ and £ = Pr, [see (5. 17)1 the filter gains (3.9)~
(3.15) become
A,=T(A-Q,V.'C)GT-KC,GT, 4.9

B,=TQV ', 4.6)
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c'-Lﬂ,g GT‘ (4-7)
Dy=LQCT(C;OC])™, 4.8)
0-4‘Q+QA Ty 2 A((Q‘*’ Q)A;r

71}
+Ve=Q V. QT+r. QY QIr],, (49
0=A0+0AT+Q,V ' QT -1, Q,V ' QTr], ~QCIKTG-G"KC,Q,

(4.10)
0=ALP+PAg+rT L'RL7 , —2], 7] LTRL, 12, (A.11)

A £ A-GTKC,, Ay & Ap-GKC,.
V. PROOF OF THE MAIN THEOREM
Using the notation of Section II the augmented system (3.1)-(3.4) can
be writien as

= (l + ﬁ: u,~(t)l,> 2(0)+ w(r) ¢.1n

i=l

where

2(1) & [xT(), xTO".
To analyze (5.1) define the second-moment matrix

Q) =BT 5.2
It follows from [28, Theorem 8.5.5, p. 142) that ((¢) satisfies

O()=A0(0+ AT+ f; AQWAT+P, 120. (53)
i=l

Lemma 5.1: A, € A if and only if

nei®A+T A0 4

is asymptotically stable.
Proof: The result follows from properties of the Kronecker product
applied (0 partitioned matrices. See [22], [26] for details. ]

Hence, & stable assures
gsa ,im E(R)Z7T(1))

exists. Furthermore, { and its nonnegative-definite dual F are unique

solutions of the modified Lyapunov equations .
0=AQ+0A™+3 A0AT+V, 5.4
i=1
0=ATP+PA+S ATPAR. 6.9

iw|

Pmi.tionﬂxﬂQ,Pimon X n,n X n, and n, X n, subblocks as

o 0O P, Py
e[2 8][4 3]
and define the 7 X n nonnegative-definite matrices

Qe @ -0nQ;'Q%, P & P,-P,yP;'PT,
0 € 0,0;'Q},. P& PuP;'P

“e -

’

and the n, X n, n, X n,, n. X n matrices l
G&Q;'Ql, MRQP, T & -P;'P,.

To optimize (3.6) subject to the constraint (5.4) over 4+, form
Lagrangian
L(A.l Bl’ Cli Dcl Q P k)

o [xQR+ <1a+gxr+f; AQAT+ v) p]l

where the Lagrange multipliers A 2 0 and # € R"** are not both zero
and @ and P arc viewed as arbitrary i X A/ matrix variables. Setting 3L/|
30 = 0, \ = 0 implies P = 0 since (4., B,, C,, D) € A*. Hence,
without foss of generality, set A = 1. Thus, the stationarity conditions are
given by!

Lm0+ QAT+ S A GAT+ D=0, (s.s)l
i=1
S=ATP1PALS ATPAR =0, . 7'
iml
oL
: H"Pqu+Pge)-o s 8)
aL P Cf PT T l
3.~ PR+ POD) +§ (PLAQICT,
+P,B,CyQ,CT)+ P, Vo, + P1B,V,=0, (5. 9).
aL
a—c"- -RLQu"‘RD,C;Qu"'RC,Q}‘O (s IO)
(4
al' 'd 1 Y '
FE: -RLOCT+RD,C,Q C+ RC, L C1=0. (5.11)
Expanding (5.6) and (5.7) yields l
0=A0+0QA ’+£ AQAT+V,, (5.12)
i=l
p
°=AQ|2+Q|C.TB:+QIM;’*E AQCTBI+VoBl, (5. l3)|
i=]
»
0=B,C,Q},+A.Q:+Q,CTBT+ QAT+, B,C,.Q:CTBT+B,V\B l
(L]
(5.14)
O=ATPy3+CTB™P+ PyA,~ L'RC.+ CIDTRC.,  (5.1%) l
0=AIP,+PA + CTRC,. (5.16)
Note that the (1, 1) subblock of (5.7) characterizing P, has been omitted
from the above equations since the estimator gains are independent of P;. l
Note that (5.8) implies (3.7a) and (3.7b). Since
szz ,p; l/I(P;/IQzP;.’I)P;fz'
M is positive semisimple. Sylvester's inequality yields (3.16). Note also l
that
O=n0, P=Pr,. (AL l
Next (3.10), (3.11), and (3. 12) follow from (5.9), (5.10), and (3.11) by
! As shown in [29), ummt«dndenmndlldlrﬁmmﬁlhlwb
symmetric arguments ( and £ eotails & modification of (5.6) and (5.7). Since these
ate being set t0 zer0, however, the final result is identical. Ahernstively, O snd
can be viewed (as we are doing here) as arbitrary matrix variables. Symmetry is
wmlmmaﬂby&eIamof(’l)nd(s.’)udunumyofl Hence,
wmathematically, the rosult of (29) is not required. l




e

-[10} J. M. Schumacher, ‘A geometric approsch to the singular filt

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 12, DECEMBER 1987 1139

using the identities

Q=Q+Q, P=P+P, (5.18)
Qu=0r7’, P.;-—FG", (5.19)
Q= Qr’, P,=GAG". (5.20)

Substituting (3.10), (3.11), (3.12) and (5.18)-(5.20) into (5.12)~(5.16)
and using (5.12) + GTI(5.13)G (5.13)G - (5.13G)T and
GTT(5.13)G - (5.13)G - (5.13G)7 yields (3.13) and (3.14). Using
LTG(5.15T ~ (5.15) - (5.15)7 yields (3.15). Finally, I'(5. 13)—
(5.14) or G(5.15)-(5.16) yields (3.9).

Remark 5.1. Equations (4.5)-(4.11) are derived in a similar mnnner
with 4 replaced by 4 in (5.1).
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Abstract—Oblique projections have been shown (o arise naturally in
both static and dynamic optimal design problems. For siatic controllers
an oblique projection was inherent in the early work of Levine and
Athans, while for dynamic controllers an oblique projection was
developed by Hyland snd Bernstein. This nmote is motivated by the

. following uatural question: What {s the relationship between the oblique
" projection arising in optimal static output feedback and the oblique
projection arisiug in optimal fixed-ordesr dynamic compensation? We
show that in monstrictly proper optimal output feedback there are,
indeed, three distinct oblique projections corresponding to singular
measurement uoise, singular control weighting, and reduced compensator
order. Moreover, we unify the Levine-Athans and Hyland-Berasteln
approsches by rederiving the optimal projection equations for combined
static/dynsmic (sonstrictly proper) output feedback in a form which
clearly iliustrates the role of the three projections in characterizing the
optimal feedback gsins. Even when the dynamic compoment of the
sonstrictly proper controlier is of full order, the controller is charscter-
ized by four matrix equations which generalize the standard LQG result.

1. INTRODUCTION

The optimal static output-feedback problem [1]. [2] and the optimal
fixed-order dynamic-compensation problem [3], [4] have been exten-
sively investigated. A salient feature of the necessary conditions for each
of these problems is the presence of an oblique projection (idempotent
matrix) which arises as a direct consequence of optimality. For the static
problem with noise-free measurements (i.c., singular measurement noise)
the necessary conditions involve the projection |2)

n=QCT(COCT)"'C

where Q is the steady-state closed-loop state covariance. The dual
projection
7,=B(B"PB)-'B'P

arises analogously in the corresponding problem involving singular
control weighting. Furthermore, for fixed-order dynamic compensation
with noisy measurements. it has recently been shown [4] that the
necessary conditions give rise to the projection

n=0P(0P)

where (¥ denotes group generalized inverse and Q and P are rank-
deficient nonnegative-definite matrices analogous to the controllabdility
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andoboernbdxtyGnmnnsofmecompemwr To understand the
relationships among 7y, 7, and 1y, the contribution of the present note
is a unified treatment of the necessary conditions for optimal static/
dynamic feedback compensation which clearly illustrates the role of
the three projections in characterizing the optimal feedback gains.
Even in the full-order case in which 7; is the identity, the result provides
a generalization of the standard LQG result to nonstrictly proper
controllers in which case the separation principle does not hold.

To clarify the ramifications of noise and weighting singularities in
optimal output feedback, consider the problem of minimizing

J=lim B{x"Rox+uRyu) a.n
with plant dynamics
XmAx+ Bu+w,, 1.2
y=Cx+w, (1.3)
and nonstrictly proper feedback compensator
. X.=AX+B.y, 1.4
u=Cx.+D.y. .9
As pointed out in [3), J is finite only if
O=tr [DTR\D.V,] » 0=R\D.V, (1.6)

where ¥, denotes the intensity of w,. Clearly, when R, and ¥, are
nonsingular (1.6) implies D=0, and hence direct feedthrough is not
permitted, i.e., the compensator must be strictly proper. Conversely, to
utilize a static gain D,, either R, or ¥, must be singular. By writing
singular R; and V¥, without loss of generality as

S K B

it follows that the static transmission between noisy measurements and
weighted controls must be zero (see Fig. 1).
The reader will observe that three feedback paths which are not ruled

(1.n
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Fig. 1.

out by (1.6) do not appear in Fig. 1. Specifically: 1) nonnoisy
measurements can be fed back to unweighted controls; 2) dynamic-
compensator outputs can be fed back to unweighted controls; and 3)
nonnoisy measurements can serve as inputs to the dynamic compensator.
The reason for considering the more limited configuration shown in Fig. 1
is that only these paths are explicitly characterized by the necessary
conditions. Hence, for simplicity we first consider only the scheme of
Fig. 1, and later introduce the remaining permissible paths. Interestingly,
whnlemudmomlgummnoteomplewlydetemumdbythe
necessary conditions, they appear to play an important role in governing
geometric interrelationships among the three projections.

Two final comments are in order. First, since our results are carried out
in a multiplicative noise setting, we generalize previous results on state
feedback [15)-[18) and dynamic compensation [9])~[11). The motivation
for using a multiplicative white noise model is to represent piant
parameter unceruinties and thereby obtain robust controllers [12]). Also,
the derivations of the necessary conditions are straightforward extensions
of the Lagrange multiplier technique used in {4] and hence have been
omitted.

II. NOTATION AND DEFINITIONS

8B, R R, &

real numbers, r X s real matrices, "', expectation

L. Oy r x ridentity, transpose, group generalized inverse {13, p. 124]
, ® Kronecker sum, Kronecker product
1. I, - 1,7 € p**"

asymptotically stable matrix
nonnegative-semisimple matrix
n, my, my, I, b, n, 14

Xo Uy Uy Yos Y2y Xe

positive integers

matrix with eigenvalues in open lefi-half plane
semisimple (nondefective) matrix with nonnegative cigenvalues

n, my, my, I,, {, n~dimensional vectors

A, A B, By; C, C, n X n matrices, # X m, matrices, /; X n matrices, i =1, --*, p

B C, n X m, matrix, ; X n matrix

A.B.,C.,D,E, n. X n., n.x h,m x n,m xly, my x I, matrices

v(r) unit variance white noise, / = 1, .-, p

wo(1), wi (1) n-dimensional, /,-dimensional white noise

Vo, Vi intensities of wo, wy; Vo 2 0, ¥, > 0

Vo n X [, cross intensity of wy, w,

Ro. R, state and control weightings; R, 2 O, R, > 0

. Ro n X m, cross weighting: Ry — RyR; 'R}, 2 0
' Ay A+ BD.C, + BBEC,A + BDC, + BBEC,,i=s I, -, p

v.R 1, v Vu I, L |7l Ry Ry 1,
(B:E.)" Ve Y (BL.E)T | ' | DGy Rl R D.C;

il [ i s.c.] [ A a..c.] :
BC, A *1BC. O

-
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= v
V
l BV +B.V\(BE)T

i | [
For arbitrary n x » Q, P, O, B, r,, ; define:

i=l i=1

R & Rn+2 BIPB,, V), & VI"’E CuQCr,,

Q. L0CcT+ V,ﬁ-t AQCT, @, 4 B{P+R{,+t BTPA,,

iw} fa}

R, 8 Rl"‘i BT(P+P)B, v, 8 Vn*‘i Cu(Q*‘Q)Cf,.

imt (L2]

P
&, S OCT+ Va+ Y, ALQ+O)CT,

i=l

[ ) n,fp+nz,+§ BI(P+P)A,

=1
A 8 A-B R (®.+BTP)r,~ &+ OCTIP;IC,
A & A-~B R (®,+BIPyr~n(@+0CDP 'y,
Ag 8 A~(7,,&-n0CNHP'CiAn u-n.k &, -BTPy),
Ry & Ro—RoR [ N(®,+BIP)r,~+1(®,+ BTPYR.'R],
+17(®,+BTPYR'R\R;(®,+BTP)r,,
Po & Vo Vo P, &+ OCDTr] - (& + OCDP ' VT,
+n(&+QCDP 'V P (&, + OCDTsT.
HI. STATIC OUTPUT FEEDBACK
Static Output Feedback Problem
Given the controlled system

x(n)= (A + f: w(r)A.-) x(

+ (Bl"' ﬁ: "4(‘)81:) ui (1) + By (1) + wo (1),  (3.1)

iwl

»nin= (C| +£ V:(’)Cu) x(0)+ wy (1),

il

3.2)

21(8) = Cox(1) 3.3

where t € [0, o), determine D, and E. such that the static output
feedback'law

u, ()= D.y,(1), 3.4
()= E. y,(r) .9

minimizes the performance criterion
J @ tim BUx()"Rox () + 20(0) "Roy 1 (0) + (1) "Ryt 1)) 3.6

1141
VouBT+B,E.V,BT
B.v,BT
R ROI Cc + (Decz) TR 1 Ct
CIRL,+CTR,D,C; CTR,C.

To develop necessary conditions for this problem, D, and E. must be
restricted to the set of second-moment-stabilizing gains

g8 {(D,.E,):Jel+£ A, ® A, is asymptotically mblc} .

ial

The requirement (D,, E) € $ implies the existence of the steady-state
closed-loop state covariance Q & lim/~. B[x(1)x(r)7). Furthermore, Q
and its nonnegative-definite dual P are the unique solutions of the
modified Lyapunov equations

0=/TQ+QJ’+£ AQAT+V, k)

i=]

0=ATP+PA+3 ATPA+R.

f=}
An additional technical assumption is that (D,, E.) be confined to the set
8+ & {(D., E) € §: C;QCI>0and BIPB,>0}.

3.8

In order to obtain closed-form expressions for the feedback gains we
make the additional assumption here and in Section IV that
[B,#0=C=0],

I.lo"'npv 3.9

i.e., for each i, B); and C;; are not both nonzero. By optimizing (3.6) with
respect to D, and E. and manipulating (3.7) and (3.8), we obtain the
following result.

Theorem 3.1: Suppose (D,, E;) € $* solves the static output feedback
problem. Then there exist # X n nonnegative-definite Q, P such that

D= -R,'®,QCH(C,QCD", (3.10)
E.= —(BIPB;)"'BIPQ,V,/, @3.11)
"and such that Q and P satisfy
0=(A~-B\R;'®,1)Q+Q(A-BR ' ®1)+V,
+ ﬁ: (A;~B,R ;lOITI)Q(AJ—B”R l’,' ®,1)7
iw)
-~V 'ern, Qv ', 6.12)
0=(A-nQV, C)TP+P(A-nQV ' C)+R,
+ 2 (Ai‘ T;Q‘- |4 ;" C“)TP(A,-- TzQ, | 4 ;,‘ C")
i)
‘-OIR |-,|0|+ fL@"'R ;,'otfuv (3.13)
where '
n & OCN(GRCD) "Gy, (.14)
n & By(B]PB,)"'B]P. 3.19)

Remark 3.1: Several special cases can be recovered formally from
Theorem 3.1. For , when the coatrol weighting is nonsingular

-~
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and the measurement noise is zero, i.c., when u; and y; are absent, delete
(3.11) and set 1;=0. Deleting also the multiplicative noise terms yields
the usual static output feedback result (1], [2].

IV. DYNAMIC OUTPUT FEEDBACK

We now expand the formulation of the static problem to include a
purely dynamic (strictly proper) dynamic compensator.

Dynamic Output Feedback Problem

Given (3.1)-(3.3), determine A,, B,, C., D., E, such that the static and
dynamic output feedback law

£ () =AXA)+ By (D), “.n
u (1) = Cexc (1) + Dcya(t), “4.2)
u()=Ey(0) “4.3)

minimizes the performance criterion (3.6).
We restrict our attention to second-moment-stabilizing controllers

D A {(Acvacl Cg.D,.E,):;®;+£I,'®;,is

lsymptoucally swable and (A, B, C.) is mmim‘l} »

which implies the existence of § & lim,~. E[H1)H1)7], where 2(1) &
(07T, x{t)")7. Furthermore, § and its dual £ are the unique solutions

of the modified Lyapunov equations
B o T~ -
0=AQ+QA4T+ ﬁ AQAT+Y, 4.9
jm}
0=A7P+ '§+§ ATPA+R @.5)

Pantitioning

o-[& %]~ [5 2]
where Q,, and Py, are n x n., we also require
D & {(A., B, C.., D, E) € D: C:(Q1~01:0;'01,)CT>0
and BI(P,~ P,,P;'PT,)B,>0}.
Optimizing (3.6) over D*, introducing new variables
Q£ 0Q-0:0;'Ql, P2P-P,P;'PT,
¢ 2 Q.0;'07,

and manipulating (4.4) and (4.5). we obtain the dynamic extension of
Theorem 3.1. The following lemma is required for the statement of the
result.

Lemma 4.1: Suppose n x n O, P are nonnegative definite. Then 0P
is nonnegative semisimple. If, in addition, rank O = n,, then there exist
n. x nG,T and n. X n.invertible M such that

(4.6)
P& PuP{'P'rz, 4.7

0P=G™MT, TG =1, (4.82,b)

Proof: The result follows from [14, Theorem 6.2.5].
Since QP is semisimple it has a group inverse (0F)! = GTM-'T and

1, & OP(QP)' =G™T (4.9)
is an oblique projection.

Theorem 4.1: Suppose (A, B., C,, D, E,) € D* solves the dynamic
output feedback problem. Then there exist # x 7 nonnegative-definite Q,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 12, DECEMBER 1987

P, O, B such that

A=T(A-BR;'®-80 'c)G", (4.10)

B.=T(r;,&-n0CHP, “.1D

C.= -R.;'(®1,-BTP:)G", (4.12)

D.= - R (®,+ BTA)QCI(C,QC])", 4.13)

E.= -(BIPB,)~'B]P@,+0CDV;}
where 7, and 7, are given by (3.14) and (3.15), G, T satisfy (4.8a),
(4.8b), and such that, with y given by (4.9), O, P, O, and P satisfy
0=AQ+QA™+ o+ 3 A.QAT+(A - B} (®,m. - BPr)

im]

- O(A,~B,R 1O~ BTPr )]~ (n. & -nOCDP ;)

(1, Q-1 OC) T+ 73, (12, &, - 1 OCT) P 1-,'(724 &,-n0CchH™r],,
(4.15)

0=ATP+PA +R.,+£ [ATPA+(A -1, &,-n0CT1P 'C\)”

i)

: P(Al"lfl.\. Q.-erC.’] P;'C”)]_(&',“ ’B.TP"I)TR .-,l

 (®yry - BTPr)+ 1] (8,1, ~BTP) TR (@11, - BTPr)y.,

(4.16)
0=An0+0AL+ (0. &-nOCTYV (11, & - . 0C)T
=11, &-n0CNP (1, & - n0C)TT],. (4.17)
0=ALP+PAQ+ (P, —BIPr)R (@1, - B]Pr)
—17 (®r, -BTPr)R (&1, -BTPr)r., (4.18)
rank O=rank P=rank OP=n,. (4.19)

Remark 4.1: Setting 7, = 1, =0, D.=0, E.=0 yields the results of
{41, 1113

Remark 4.2: Suppose.n.=n so that 7y=1,. Then the resulting full-
order nonstrictly proper controller is characterized by four matrix
equations which generalize the standard LQG result. In this case the
separation principle is no longer valid.

V. ADDITIONAL FEEDBACK PATHS

We now introduce the feedback paths not shown in Fig. 1. For the static
problem replace (3.5) by

u (1) = E.y\(t) + K, 2(2). s.1
Optimizing with respect to K, yields the additional condition
0=C,0P8,; 5.2)
which implies
O=r,r,. ¢.3

This geometric condition hoids when K| is optimalfy chosen. Although K|

(4.14)

B s -Mv&o‘«!m Dasebie 1 B0 ~In:Ir0vhu"b..--

4
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is not given explicitly, it does play a role in the necessary conditions since
A is replaced by A + B,KC;.
For the dynamic problem replace (4.1) and (4.3) by

()= Acx (1) + By (1) + Ky y2(0), G.9
uy(1) = Ecyi (0) + Kox () + K, 3200). 5.5
Optimizing with respect to X, K3, K yields
0=Cy(QP+ QP+ QPF)B,, (5.6a)
0=0PB,, (5.6b)
0=C; 05, (5.6¢)
which imply
O=mn7, (5.79)
0=m11y, (5.70)
O=n71. (5.7¢)
Note that (5.7b) and (5.7c) imply
O=n731y. (5.8)

Using (5.75), (5.7¢), O = 1§, P = Pry (see [4]), (4.10)-(4.18) become

A,= P(A—B. & Q,p C.+81K.C~)G'+I'B;K»-K,C¢G'
(5.9)
B.=Tnd, 0., (5.10)
C=-R'®1.GT, 6.1
D.=-R.'®.0c1(C;0CD), (5.12)
E.= -(BIPB,))-'BIPQ, V', (5.13)
n
0=A.Q+QAT+Vo+ Y 1A QAT+ (A -B.R'® 1)
irt
) Q(A.I‘Bllk;,'@JHA)TI-“’IJQ-IV;'QIT;‘
4,1, QPRI T, (5.14)
P
0=AIP+PA+ Ror Y LATPA+(A+n& 0 [C)T
il
- P(A, - r;é_,p;,'C“)l—rlrx ®TR ,_,I&Ju
+7] 7], ®TR; '(9 TiiTii (5.15)

O=JhQ+QA;‘+qu:p|-,lQI7zr1
LTy Q‘p;'a‘rr{* T~ GTKGE- QK GG,
0=ATP+PAQ+TT 0 k 0:711

(5.16)

=1 71 ®TR '\ ®)ri, 7, ~TTK,B,P- P(K,B,)'T, (5.17)

where
A=A+ BK\C~GTK\Cs, Ar=A+BiK\Cy+ BKST,
Ag & Aa+BK\C:-GTK,Cy, Apy & Ap+BiK,C;+ BoK,T.
V1. DIRECTIONS FOR FURTHER RESEARCH

More general solutions can be obtained by incorporating singular
estimation techniques [15) where noise-free measurements are repeatedly
differentiated to enlarge the class of available outputs.
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1. Introduction

The singular LQG control problem has been of considerable interest for almost two decades
([1-15)). Such problems arise when some of the measurements are noise free or when some of the
control signals are unweighted. This will be the case, for example, if the sensor noise is colored or
if actuator dynamics are included. Augmentation of the plant dynamics by means of noise filters

or actuator dynamics thus leads directly to the singular problem formulation.

Most of the literature on the singular LQG problem is based upon limiting procedures in which
suitable weighting matrices and noise intensities approach zero. These results demonstrate the
types of behavior which can arise in the limiting solution including impulsive controls and singular

arcs.

The available literature is concerned, of course, with determining the optimal limiting (i.e.,
singular) control. In practical applications, however, it is often of interest to determine the optimal
controller within a prespecified class of controllers. In particular, we consider the singular LQG
problem in which the controller is preconstrained to possess a fixed dynamic feedback structure.
One benefit of this approach is that the fixed structure constraint eliminates the possibility of

impulsive controls and other complex behavior.

Preliminary results for the singular LQG problem were obtained in [15] using the fixed struc-
ture approach. For generality, the problem considered in [15] permits the design of fixed-order,
i.e., reduced-order, dynamic compensators. As in [16], the solution is given by a system of coupled
algebraic Riccati and Lyapunov equations whose solutions {(denoted by Q, P,Q, P) are used to ex-
plicitly characterize the optimal feedback gains. The coupling is due to a ﬁair of oblique projections
(i.e., idempotent matrices) which arise as a direct consequence of the fixed structure constraint.

The order-reduction projection r defined by
r &£ QP(QP)*,
where ( )* denotes group generalized inverse, appeared originally in (16], while the static projection
v given by
v £QcT(cecT)-1c,
is familiar from least squares analysis.
The results of [15] are incomplete, however, in that the gains associated with certain feedback

paths were not given explicitly. For the corresponding singular estimation problem ([17]) this de-

1




fect was remedied in [18] where all feedback gains were explicitly characterized. In addition, the
solution obtained in [18] was shown to agree completely with results obtained using standard lim-
iting methods when the (unconstrained) optimal singular estimator does not possess differentiators
([19]). The results of [18] thus provide an alternative approach to the singular estimation problem

considered in [20,21,22] and the numerous references therein.

The contribution of the present paper is thus to complete the development of [15] by incorpo-
rating the methods used in [18]. Accordingly, we derive a coupled system of modified Riccati and
Lyapunov equations which explicitly characterize the feedback gains of the fixed-structure singular
LQG controller. For generality we consider partial or total singularity in both the control weight-
ing and measurement noise intensity matrices, and we allow the dynamic compensator to be of
arbitrary dimension less than or equal to the number of plant states minus the number of noise-
free measurements. In the special case in which the order of the dynamic compensator is equal to
the number of plant states minus the number of noise-free measurements (i.e., the quasi full-order
case), then we show that the optimal solution decomposes (separates) into a reduced-order observer
followed by state feedback.

An additional benefit of our approach is the ability te impose an upper bound on the number
of differentiators to be included in the feedback controller. That is, while certain measurement
signals may be noise free and hence differentiable, it may be undesirable in practice to implement
more than one level of differentiation or, perhaps any differentiation at all. Furthermore, as in [18]
we demonstrate connections with earlier results by showing that the fixed structure solution agrees
with the standard limiting solution when the latter possesses the same number of differentiators as

are included in the prespecified controller structure.

To illustrate the solution we consider a numerical example of fourth order with two noise-
free measurements and one noisy measurement. (Numerical results for the singular control case
are immediate from duality). By solving the coupled systems of modified Riccati and Lyapunov
equations by means of a homotopy algorithm ([23]), we obtain the quasi full-order solution (second-

order controller) as well as an optimal first-order controller.
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Abstract. The Optimal Projection/Maximum Entropy
approach to designing low-order controllers for
high-order systems with parameter uncertainties
is reviewed.

The philosophy of representing urdcertain
parameters by means of Stratonovich
multiplicative white noise is motivated by means
of the Maximum Entropy Principle of Jaynes and
statistical analysis of modal systems. The main
result, the optimal projection equations for
fixed-order dynamic compensation in the presence
of state-, control- and measurement-dependent
noise, represents a fundamental general{zation of
classical LQG theory.

1. Overview

Optima) Projection/Maximum Entropy Stochastic
Model1ing and Reduced-Order Design Synthes{s

is a rigorous new approach to designing robust,
impiementable feedback controllers. Inspired

by Statistical Energy Analysis [1], a branch of
dynamic modal analysis developed for analyzing
acoustic vibrations, its present stage of
development [2-22], embodies a mathematically
rigorous, fundamental generalization of classical
steady-state Kalman filter and 1inear-quadratic-
Gaussian (LQG) optimal control theory. Although
LQG theory is an effective tool for optimally
quantifying performance/sensor-resolution and
performance/actuation-level tradeoffs, it suffers
from two fundamental defects which severely limit
its usefulness in practice.

1. Whereas the dimension of an LQG
controller must equal that of the controlled
plant, optimal projection design characterizes
the quadratically optimal controller of fixed
dimension less than that of the plant in
accordance implementation constraints (e.g.,
relfabilfty, complexity or real-time computing
capability).

2. Mhereas LQG presumes exact knowledge of
each and every parameter appearing in the state-
space plant description, maximum entropy
modelling provides a stochastic plant model which
admits fgnorance with regard to rarameter values
in accordance with unavoidable plant modelling
errors.

™
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Dennis S. Bernstein

David C. Hyland

Harris Corporation
Government Aerospace Systems Division
Controls Analysis and Synthesis Group

Melbourne, Florida 32902

with regard to the latter item, it should be
stressed that one of the major problems in
designing high-performance control systems is
that of robustness, i.e., the ability of the
controller to tolerate errors in the plant model
upon which fts design is predicated. Maximum
entropy modelling directly addresses this problem
by incorporating into the dynamic model a repre-
sentation of ignorance (i.e., uncertainty)
regarding physical parameters. Roughly speaking,
the idea behind the approach is to use a probabi-
1istic representation of each imperfectly known
plant parameter so that the quadratically optimal
control system desfgned under this probabilistic
model {s automatically desensitized to actual
parameter varjations when the control system

is fmplemented. The overall control-design
procedure thus avoids laborious trial and error
post-design “tweaking."

2. Motivation

The fnherent time- and frequency-domain duality
in representing linear dynamic systems ({.e.,
state space versus transfer functions) provides
control -system designers with complementary
methodologies for assessing tradeoffs between
performance objectives and the design constrafints
of sensor resoluttion, actuation levels, plant
model1ing accuracy and controller complexity. In
spite of the ability of LQG to optimally quantify
performance/sensor-resolution and performance/
actuation-level tradeoffs in a state-space
setting, its enormous sensitivity to plant
modelling errors has forced practitioners to seek
generalizations of classfcal frequency domain
methods. In numerous practical situations,
however, input/output techniques possess funda-
mental limitations. For example, representing
modelling uncertainty in a frequency-domain plant
model G(s) by means of

G(s) +AG(s),

where AG remains {n a normed neighborhood of 6,
is essentfally a black-box (nonparametric)
approach: By failing to exploit physical laws
{such as conservation of energy), systems
represented by G + AG may actually be physically
impossible, resulting in unwarranted design
conservatism at the expense of system
performance. Hence, when some knowledge of
internal mechanisms is availabi® (i.e., the
“grey-box" situation), state-space representa-
tions may provide greater modelling fidelity.
These observations are motivated by the problem
of controlling vibration in flexible structures
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where 1nternal ener*y dissipation precludes
right-half-plane poles and where nigh-order
finite-element models have highly structured
dynamics but possess numerous uncertain
parameters. More specifically, frequency
uncertainties for higher order modes are much
larger in magnitude than damping uncertainties.
Hence, the tnability to differentiate between
these physical parameters in an input-output
representation leads to severe performance
consequences,

The optimal projection/maximum entropy approach
generalizes LQG theory in two fundamental
respects: design of reduced-order controllers
plus accommodation of a priori parameter
uncertainties. For clarity, we discuss these
generalizations separately following the left
branch of Fig. 1. Optimal projection design is
discussed in Section 3, followed by maximum
entropy modelling in Sections 4, 5, and 6.

OPTIMAL PROJECTION/MAXIMUM ENTROPY
APPROACH TO
LOW-ORDER, ROBUST CONTROLLER DESIGN

La6
2 MECAY)
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3. Review of the Optimal Projection Aporoach

Most research into the design of reduced-order
controllers involves one of two sequential
procedures: model reduction followed by
controller design, or controller design followed
by controller reduction. The optimal projection
equations represent a radical departure from both
of these approaches by directly characterizing
the quadratically optimal reduced-order control-
ler for a high-order model. Assuming a purely
dynamic linear structure for the desired
compensator, whose order is determined by
{mplementation constraints, a parameter
optimization approach is taken. There is, of
course, nothing novel about this approach per se
and it has been widely studfed in the control
1iterature (see. -:ferences listed in (18]). This
approach, howev.r, fell into disrepute because of
the extreme complexity of the grossly unwieldy
first-order necessary conditions which afforded
Tittle insight and engendered brute-force
gradient search techniques. The cructal
discovery occurred [7] where it was revealed that
the necessary conditions for the dynamic-
compensation problem give rise to the definition

of an o¥timal projection as a rigorous,
unassallable consequence of quadratic optimality
without recourse to ad hoc methods. Exploitation
of this projection Yeads to immense simplifi-
cation of the “primitive" form of the necessary
conditfons which now provide a transparent
generalization of the pair of separated Riccatf
equations of standard LQG theory. In particular,
the optimal projection equations comprise a
system of four matrix equatfons coupled by an
oblique projection which determines the optimal
controller gains. The system of matrix equations
includes a pair of modified Riccati equations
which are analogous to the standard Riccatf{
equations, along with a pair of modified Lyapunov
equations which arise separately in the mode?
reduction problem [19]. The coupling by means of
the projection reveals the inherent
inseparability of these operations in the
reduced-order case since optimality
considerations demand that, in a very precise
sense, "reduction" and "control design" be
performed simultaneously. Hence the full-order
model is retained throughout the control design
process and there is no need to truncate the
plant model.

4, Maximum Entropy Modelling

Although optimal projection design deals directly
and rigorously with the question of system
dimenstion by trading order off against perfor-
mance, it {s, nevertheless, predicated upon the
availability of a completely accurate plant and
disturbance model. Maximum entropy modelling,
however, addresses the robustness problem by
directly including parameter uncertainties in
the plant and disturbance models so that optimal
projection design plus maximum entropy modelling
automatically yfelds control designs that trade
performance off against modellfng uncertainties.
In order to review the maximum entropy approach
it 1s {mportant to discuss the class of problems
that motivated this work, namely, control of
flexible structures. A finite-element model of
a large flexible structure is, generally, an
extremely high-order system. For example, a
version of the widely studied Draper Model #2
includes 3 rigid body modes, 147 elastic modes
and 6 disturbance states, {.e., a total of 306
states, along with 9 sensors and 9 actuators.
Besides the high order of these systems, finite
element modelling is known to have poor accuracy,
particularly for the high-order modes.
Reasonable and not overly conservative uncer-
tainty estimates predict 30-50 percent error in
modal frequencies after the first 10 modes, with
the situation considerably more complex (and
pessimistic) for damping estimates.

Maximum entropy modelling is a form of stochastic
mode)1ing. Although external disturbances are
traditionally modelled as random processes, the
use of stochastic theory to model plant parameter
uncertainty has seen relatively limited applica-
tion. To dispel all objections to a stochastic
parameter-uncertainty model, we invoke the modern
information-theoretic interpretation of probabil-
ity theory. Rather than regard the probability
of an event as an objective quantity such as *
the 1imiting frequency of outcomes of .umerous
repetitions (as, e.g., the number of heads in
1,000 coin tosses), we adopt the view that the

probability of an event is a subjective quantity
which reflects the observer's certainty as to
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whether 2 particular event will or will not
occur. This quantity is nothing more than a
measure of the information (including, e.gq.,

all theoretical analysis and empirical data)
available to the observer. In this sense the
validity of a stochastic model of a flexible
structure, for example, does not rely upon the
existence of a fleet of such objects (substftute
sensemble” for “fleet” in the classical termi-
nology) but rather resides in the interpretation
that 1t expresses the engineer's certainty or
uncertainty regarding the values of physical
parameters such as stiffnesses of structural
components. This view of probability theory has
{ts roots in Shannon's informatfon theory but was
first articulated unambiguously by Jaynes [23-26].

The preeminent problem in modelling the rea?
world is thus the following: Given limited
{incomplete) a priori data, how does one
construct a well-defined (complete) probability
model which is consistent with the available data
but which avoids inventing data which does not
exist? To this end we invoke Jaynes® Maximum
Entropy Principle: First, define a measure of
ignorance in terms of the information-theoretic
entropy, and then determine the probabflfity
distribution which maximizes this measure subject
to agreement with the available data. The
reasoning behind this principle {s that the
probability distribution which maximizes the

a priori ignorance must be the least presumptive
(f.e., Teast Tikely to invent data) on the
average since the corresponding amount of

a postertori learned information (should all
uncertainty suddenly disappear) would necessar{ly
be maximized. 1f, for some probabiiity distribu-
tion, the a priori ignorance and hence the

a posteriori learning were less than their poten-
tially maximum value, then this distribution must
be based upon invented and hence generally incor-
rect data., The Maximum Entropy Principle is
clearly desirable for control-system design where
the introduction of false data is to be assidu-
ously avoided.

5. Minimum-Information Modelling of
Parameter Uncertainties

For dynamical-system modelling it was first shown
by Hyland [2] that for structural systems the
minimum {nformation Yinear stochastic dynamic
model induced by the Maximum Entropy Principle of
Jaynes 1s a Stratonovich multiplicative white
noise model. In the present paper we adopt this
model and explore {its ramifications for general
systems. The basic model is given by

®(t) = (R + 1{‘\vi(t)'§1)7(t) +3(),  (5.1)

~

where X(t)e iﬁ . A 'A“1 65"" ., Wit) is zero-

mean Gaussian white disturbance poise with
non-negative-definite intensity V, and v,(t)

are zero-mean, unit-intensity Gaussian white
noise processes which are mutually uncorrelated
and uncorrelated with W(t). The multiplicative
white noise model (5.1) can be regarded as a
parameter uncertainty model where each vi(t)

Corresponds to a single uncertain parameter whose
pattern and magnitude are given by %}/llhill

and lli}ll. respectively.

To see why (5.1) is a minimum information model
of parameter g?certalnty. note that when the
pattern 1/II 1I| of an uncertain parameter

is known, 211 avaflable data (theoretical and
empirical) can be used to determine a suitable
value for the magnitude || 1ll to réflect the

corresponding level of uncertainty. Clearly, the
collection of magnitudes constitutes the nin{mum
data set needed to render (5.1) well defined.
For the harmonic oscillator with uncertain
natural frequency, the uncertainty magnitude is
iven by the reciprocal of the decorrelation time
Fig. 2). Note that the uncertainty represen-
tation (5.1) is a minimum information model in
the sense that it eschews detailed descriptions
of joint probability statistics of unknown
parameters.

MINIMUM-INFORMATION MODELLING
DECORRELATION TiME

T‘ iedhe s KW
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Fig. 2

To eliminate the white noise formalism, the model
(5.1) 1s usually rigorized by the Ito differen-
tial equation

P ~ o~
dax, = (Adt + EEIdvitAi)‘t + &, (5.2)

where dvi¢ and dwt are Brownian motions,

{.e., Wiener processes. Although such models
were studied extensively for control design, this
approach fell into disrepute with the publication
of [27, 28] where 1t was shown for discrete-time
systems that sufficfently high uncertainty levels
(1.e., magnitudes ||A,]l above a "threshold")

lead to the nonexistence of a steady-state
solution. Although it was purported that this
“phenomenon® was an "obvious” consequence of
high uncertainty levels, these conclusions
failed to take into account (possibly because of
the discrete-time setting) the subtle
relationship between the ordinary differential
equation (5.1) and the stochastic differential
equation (5.2). Indeed, 1t was shown in [29]
that if a stochastic differential equation is
regarded as the 1imit of a sequence of
approximating ordinary differential equations
then (5.2) 1s not the correct version of (5.4,




Instead, the ordinary differential equation (5.1)
with sultiplicative white noise corresponds to
the corrected Ito differential equation

K = Rat + 3 avy KX, + &, (5.3)

where

- p
R, =K+ %Flif . (5.4)

which differs from the “naive" equation (5.2)

by a systematic drift term. The form of (5.3)
was corroborated completely independently by
Stratonovich [30), whose results actually
appeared in the Russian literature prior to

1965. MHis approach is based upon an alternative
definition of the stochastic integral which
differs from the Ito definition by a mathematical
technicality.

In spite of the glaring technicality of the
Stratonovich correction, aimost all research

on the estimation and control of such systems
failed to perceive {ts physical significance.
Specifically, the Stratonovich correction
neutralizes the “"threshold uncertainty
principle”: For systems which are inherently
stable under particular parameter variations
{e.g., structures with uncertain stiffness
matrices), the Stratonovich formulation correctly
predicts unconditional second-moment stability in
contrast to the Ito formulation within which a
stringent uncertainty threshold is encountered.
We shall now proceed to demonstrate this fact by
means of a compelling example relevant to the
modeling and control of flexible structures, in
particular, and hyperbolic systems, in general.

First, suppose that zero-point deviations of X(t)
are of interest and are evaluated according to

J = lim ER(t)TRR(t) = lim tr QLIR, (5.5)
t—+o0

trw

where ® € RIXY and the second moment of the
state is ~

Ate) & ER(R ()T (5.6)

The obvious fact cannot be overemphasized that
the primary state statistic of design interest in
11near-quadratic optimization is the state
covariance {5.6). From Ito calculus it follows
that Q(t) is given for the naive model (5.2) by

. e p ~ o ~
Q) = We) + Yokl + 12]A10(t)AI +¥ (5
.and for the corrected model (5.3) by
Bie) = 'Ksﬁ'(t) + 'G'(t)i: + }E T,ﬁ(t)'ﬂ'} + V. (5.8)
i=1

Each of these "stochastic” Lyapunov differential
equations, which govern the evolutfon of the
second moment, should be regarded as n(n+l)/2
ordinary differential equations. Hence we wish

to address the following question: How do the
solutfons of the stochastic Lyapunov equatifons
(5.7) and (5.8) differ from each other and from
the “deterministic® Lyapunov equation

Ble) = KG(e) + QUOIKT + 7, (5.9)
particularly in the presence of high uncertainty
Tevels? The answer to this question of course

depends upon the stochastic modification terms
which for the naive model are given by

p
m I3 & XA (5.10)
i=)
and for the corrected model by

~ p ~ ~
ESIO(t)]=121[%K¥3'(t) + PORT KFORT. (5.11)

Consider a system consisting of a pair of 1ightly
damped modes so that

0 ~“ 0 0

e o o 0 04
0 0 0 -
0 0 w, -an

where ny = {j w{ , and to represent
frequency uncertainties let

ft}) -1 0 0]
~ 0 o0 o
= Y. .
LI P! 0 o0 0
| 0 0 0 O
-8 o o g‘!
~ 0 0
= Y .
2 M, 0 0 A
;0 0 1 OJ

where for simplicity we have ignored the effects
of frequency uncertainties on the effective decay
rate n,. The magnitudes of the uncertainties

are scaled by means of M and 72. For this
example the Ito stochastic modification
ﬂxfa(t)] has the form

Rty A, o o ]
A, P o o |
| o 0 Vgt)  V5lg(t)
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Although the off-diagonal terms have a
stabi11zing effect, 1t is clear that the diagonal
elements destabilize the state variances. Hence,
{t 1s not surprising that for sufficiently high
uncertainty levels, 1.e., vy > 0, the Ito mode)

i{s second-moment unstable. These observations
are completely in accordance with the threshold
uncertainty principle. The Stratonovich
corrected stochastic modification Ms[Q(t)],
however, has the form

EUIISE S gy

R Tt MYC R TCT T TR NEE AR ) I 1 A

REE TR T MORE

which also has stabilizing off-diagonal elements
but has fundamentally different diagonal
elements: Rather than destabil{zing the state
variances, the diagonal elements of the corrected
stochastic modification are equilibrating. This
effect is even more striking EEen M1 and Mg

are transformed into the basis witﬁxrespect to
which

e 0 Joy-n 0 0
0 0 ~Jwp=m, o |
L 0 0 0 J“’z'ﬂz
.

where higher order terms in n have been ignored.
In this basis, the diagonal terms of M, [Q(t)]

are destabilizing whereas the diagonal terms of
M[(t)] exactly vanish.

The negative coefficients fn the off-dfagonal
terms Imply progressive decorrelation between
pairs of dynamical states. -This informational or
statistical damping phenomenon is a direct result
of parameter uncertainties captured by the
mu1%;p]1cafive white noise mo§e1. The
Stratonovich correction, moreover, is cruciail:

By neutralizing the threshold uncertainty
principle, it permits the consideration of

long-term effects for arbitrary uncertainty
levels.

As an example of the ramifications of these
observations, assume (as {s usually the case in
practice) that uncertainties in modal frequency
obtained from finite-element analysis of a

Fivhhat il ]
My Aden peleifym  fried,m

vgw,,m-a“(uL

becomes increasingly diagonally dominant with
increasing frequency and thus assumes the
qualitative form given in Fig. 3. The benefits
of this sparse form are important: The computa-
tional effort required to determine the steady-
state covariance (and thus to design a closed-
Toop controller, for example) is directly propor-
tional to the amount of information reposed in
the mode? or, equivalently, inversely propor-
tional to the level of modelled parameter
uncertainty. This casts new 1ight on the
computational design burden vis-a-vis the
model1ing question: The computational burden
depends only upon the information actually
available. A simple control -design exercise
involving full-state feedback illustrates this
point. e gains for the higher order modes of
the beam in Fig. 4, whose frequency uncertain-
ties increase 1inearly with frequency, were
obtained with modest computational effort in
spite of W = 100 (see Fig. 5). Another important
ramification of the qualitative form of G §s the
automatic generation of & high-/low-authority
control law. Note that for the higher order and
hence highly uncertain modes the control gains
indicate an fnherently stable, low-performance
rate-feedback control law, whereas for the
lowest-order modes the control law is high
authority, i.e.. "LQ" in character.

EFFECT OF FREQUENCY UNCERTAINTIES ON
THE QUALITATIVE STRUCTURE OF THE
STEADY-STATE COVARIANCE Q = :lm Efx(t)x(t)T]

[ Q 7
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flexible structure increase with mode number. —
From the form of M[G(t)] 1t 1s easy to deduce , e
that the steady-state covariance l + T ¢ entinrammes m oresiner
ratauEncns
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6. ggtimal Pro%ection Des1§n with

ratonovich Multiplicative White Noise
To state the Reduced-Order Dynamic Compensation
Problem, we require the following notation. let

x l.R yGR‘ uER s A, A-l.....ApER“xn

o €0 CueensCy € R, meeim,

n n_xn nxt mxn
c ¢¢c (4 c
%eR ,%65 ,%e& ,%ek .

B, 51,...,Bp€5

€ Rnxn ] 20, Rz esmxm' Rz >0, Rlzeznxm

Furthermore, let v‘,....vp be unit-intensity,
zero-mean and mutually uncorrelated white noise
processes and let W, € g? and W, € Rf be

zero-mean white noise processes with intensities
vlzo and v2>o. respectively, and cross-

fntensity V), ¢ R"™*%. Assume that LA

and x(0) are uncorrelated. We require the
technical assumption that, for each i, 81 0

implies C1 =0, 1.e., the control~ and
measurement-dependent noises are uncorrelated.

ggtimaI Reduced-Order g¥nam1c-ComEensation
obiem. ven the controlled system

. p P
X = (A+1§_‘,‘v,A,)x + (B+ 121311!31 u ¢+ ", (6.1)

ys= (C+§:v Cix +w (6.2)
=R 2

design an ncth-order dynamic compensator
X~ Ax. + ch, (6.3)

u =Cx (6.4)
c¢

which minimizes the performance criterion
3(A B ,C ) = Vin E[xTR1x+2xT

R uwi'R ul. (6.5)
€ CC 4w 12 2

To guarantee that J is finite and independent of
initial conditions, we restrict (Ac'8c°cc)

to the (open) set of second-moment-stabilizing
triples

se{a..c) : Kok + z Aok 15 stabte

and (A C_) is controllable and observable },

c’ c’

where @ and @ denote.Kronecker sum and product and

12 2 12 1P
Asﬁ A +2-12’:]A1, Bsﬁ B "2‘21“131' cs* c+ ,‘,E]cilki.

Call a square matrix positive semisimple if ft
has positive eigenvalues and a diagonal Jordan
canonical form, j.e., if it is similar to a
positive-diagonal (or, equivalently, a
positive-definite) matrix. The following lemma
is proved in [19].

Lenima 6.1. If nxn g f are non-negative
aefinife and rank 6 =n then there exist

n.xn 6,T and n.xn. positi. --semisimple M
such that

8F = 6Tur, (6.6)
rgl = In - (6.7)

For convenience in stating the main result
shall refer to G, M and I satisfying (6. 6; and

{6.7) as a projective factorization of ﬁﬁ.

For convenience in stating the optimality
conditions, define the following notation for

Q, P, B, § g™

P T
Rpg # Ry + Ela,(wﬁ)ai.

v2s

p
By, + 1gcamﬁn}.
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Theorem 6.1. Suppose (Ac,Bc,Cc) € S solves
e optimal dynamic-compensation problem. Then
there exist nxn non-negative-definite matrices Q,

P, § and P such that, for some projective
factorization, G,M, T of QF, Ac, B, and C¢
are given by

-1 -1 T
A = TIA-BR, P -QV, C G, (6.8)
=1
B, = TQ\V,.. (6.9)
<1, T
Cc = RpP6 (6.10)

and such “nat the following conditions are
satisfied:

T Ld T A -1
0 = A QA + 1;}[Aiok,m1 -lainhgs)ﬁu\1 -B,R51P,
a7 ATT
= QVasls + T Q5V2e07)s (6.11)

T

LA ¢ . T -
0= ASP+PAS+R1+1§.:‘[A1PA1+(A1 9,¥5:C4) Pla-gV5iCs )]

T, -} T.7,-1
- gsRZSEs + flgskzsgsfl, (6.12)
T AT -1, T.7T
0= a0+ fig. +0vo0] ~mov0ir (6.13)
. T T ) 1.7
0 = Mg B + P+ BIRP, - TRRy P (6.14)

rank ﬁ = rank 9 = rank aﬁ =n..

Remark 6.1. Since R, 2 Ry, so that

Ril < R;'. it is clear that the

control -dependent noise effectively suppresses
the regulator gain Cc. Similarly, since
VZSZVZ' the measurement-dependent noise
suppresses the observer gain Bc. The terms
AioAI are responsible for the decorrelation
effects discussed in Section §.

P)T)
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NUMERICAL SOLUTION OF THE OPTIMAL PROJECTION/
MAXIMUM ENTROPY DESIGN EQUATIONS FOR
LOW-ORDER, ROBUST CONTROLLER DESIGN

Dennis S. Bernstein, Lawrence D. Davis
Scott W. Greeley and David C. Hyland

Harris Corporation, GASD
MS 102/4134
Melbourne, FL 32901

ABSTRACT

This psaper summsrizes some recent results
obtained using the optimal projection/msximum entropy
control-design equations. The main results include:
low-order controllers for CSDL Model #2; robust
controllers for the SCOLE and VCOSS A models with
modal-frequency uncertainties; and Doyle’s example.

1. Introduction

The optimal projection/maximum entropy design
equations are discussed in [1]-[5] and a complete,
self-contained derivation appears in [5]. In brief,
these equations génerslize classical LQG theory im two
distinct ways. First, the controller is conmstrained
to have a fixed, reduced order and the resulting
necessary conditions involve an oblique projection
(1]. And, second, multiplicative white noise is
introduced into the plant to capture the statistical
effects of parameter uncertainty. The resulting
dynamical equation is interpreted according to
symmetric Stratonovich stochastic integration and,
using the theory of stochastic approximation, has been
motivated by the msximum entropy principle of Jaynes.

2. CSDL #2

The optimsl projection (OP) reduced-order design
equations were solved for the 20-state version of CSDL
Model #2 treated in [6,7]. For various control-~
suthority levels, OP designs were obtained for orders

n, = 10, 6 and 4. PFigure 1 summarizes the results
obtained in [6,7].

= 4, the allowable control bandwidth is severely
restricted. The OP designs, however, all lie within
the shaded band close to the 1QG performsnce over a
considerably expanded range of control bandwidths.
Relative to LQG, the performance of the OP designs is
given in Figure 2. Details of the numerical algorithm
used to obtain these results sre given in (8].

3. scop

The S8COLE configuration is discussed at length in
[9,10]. The model utilized in [9] involves 16 states,
12 sctuators snd 17 sensors. The LQG design reveals
instability resulting from 5% modal-frequency
perturbations. Using the maximum entropy (ME) design
equations, a pair of controllers were obtained in the
presence of stochastically modelled modal-frequency
urcertainties. The first design exhidbits near-1QG
performance with 602 incresse in robustoess, while the
second design is considerably more robust (behaving
more like the open-loop structure) with nominal
performance within 62 of LQG. These designs (Fig. 3)
illustrate the performance/robustness tradeoff
capabilities of the ME method. It should be noted

Note that for compensator order o,

4795

that, for lightly damped structures, significant
wmodal~frequency uncertainty corresponds to promounced
spectral-resonance shifting. Frequency-domain bounds
for such perturbations are consequently large and

hence may result in conservative performance
estimates.

4. YCOSS A

The VCOSS A model [11) is a version of CSDL model
#2 involving 9 colocated sensor/actuator psirs plus 2
line-of-sight sensors. For the 28-state (l4-mode)
model and corresponding 28-state LQG design obtained
in [11], the sensitivity to modal-frequency
perturbation is shown in Figure 4. Note that
instability results from 3% wodal-frequency
perturbations of one of the modelled poles. For the
maximum entropy design (Figure 5) the robustness is
considerably improved with approximstely 20%
performsnce trade. Of course, there are a continuum
of intermediate designs that could be obtained for
desired performance/robustness tradeoffs. The closed-
loop stability margins for the full 142-mode
evaluation model are shown in Figure 6.

5. Dovle’s Exsmple

As a final application of the ME design
equations, we consider the problem used in [12] to
demonstrate the lack of robustness of LQG designs. As
shown in [12] (see [4] for notation), 1QG regulators
for the example

(1 1] 0
A - » B - ’ c = {1 0],
0 OJ b
-
(1 1
v, =0 . V= 0, v, =1,
1 1]
1
R, =p . Ry, =0, R, = 1,
L1 IJ

have arbitrarily small stability margin with regard to
variations b + Ab vhen C and p are sufficiently large
and b = I, Setting 0 = p= 60, it follows that the
LQG regulator is only stable for .93 < beabd £ 1.01.
Uncertainty in b can be modelled by setting p = 1,

A =0,8 =0 b1 ans C, = 0. Solving the ME
design equations with bl = .05, .10, .15 and .20

yields a series of incressingly robust controller
designs with respect to both positive and negative
variations 4b (see Figures 7 and 8). Tor more
details, see [13]).

CH2245-9/85/0000-1795 $1.00 © 1985 IEEE
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